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Abstract

Blackbox optimization—optimization in presence of limited knowledge about the objective
function—has recently enjoyed a large increase in interest because of the demand from the
practitioners. This has triggered a race for new high performance algorithms for solving large,
difficult problems. Simulated annealing, genetic algorithms, tabu search are some examples.
Unfortunately, each of these algorithms is creating a separate field in itself and their use in
practice is often guided by personal discretion rather than scientific reasons. The primary
reason behind this confusing situation is the lack of any comprehensive understanding about
blackbox search. This dissertation takes a step toward clearing some of the confusion.

The main objectives of this dissertation are:

1. present SEARCH (Search Envisioned As Relation & Class Hierarchizing)—an alternate
perspective of blackbox optimization and its quantitative analysis that lays the foundation
essential for transcending the limits of random enumerative search;

2. design and testing of the fast messy genetic algorithm.

SEARCH is a general framework for understanding blackbox optimization in terms of rela-
tions, classes and ordering. The primary motivation comes from the observation that sampling
in blackbox optimization is essentially an inductive process (Michalski, 1983) and in absence of
any relation among the members of the search space, induction is no better than enumeration.
The foundation of SEARCH is laid on a decomposition of BBO into relation, class, and sample
spaces. An ordinal, probabilistic, and approximate framework is developed on this foundation
to identify the fundamental principles in blackbox optimization, essential for transcending the
limits of random enumerative search. Bounds on success probability and sample complexity
are derived. I explicitly consider specific blackbox algorithms like simulated annealing, genetic
algorithms and demonstrate that the fundamental computations in all of them can be captured
using SEARCH. SEARCH also offers an alternate perspective of natural evolution that estab-
lishes the computational role of gene expression (DNA—RNA—Protein) in evolution. This
model of evolutionary computation hypothesizes a possible mapping of the decomposition in
relation, class, and sample spaces of SEARCH into the transcriptional regulatory mechanisms,
proteins, and DNA respectively.

The second part of this dissertation starts by noting the limitations of simple GAs, which
fail to properly search for relations and makes decision making very noisy by combining relation,
class, and the sample spaces. Messy genetic algorithms (Goldberg, Korb, & Deb, 1989; Deb,
1991) are a rare class of algorithms that emphasize the search for relations. Despite this
strength of messy GAs, they lacked complete benefits of implicit parallelism (Holland, 1975).
The fast messy GA initiated by Goldberg, Deb, Kargupta, and Harik (1993) introduced some
of the benefits of implicit parallelism in messy GA without sacrificing its other strengths very
much. This dissertation investigates fast messy GAs and presents test results to demonstrate
its performance for order-£ delineable problems.
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Chapter 1

Introduction

Searching for a solution to any problem usually starts with understanding the problem. How-
ever, as the degree of complexity of the problem increases, the chances for understanding the
problem by pure human intellect also diminish. Many practical optimization problems fall into
this category. Lack of enough domain knowledge and nonlinear interaction among the opti-
mization variables of a large problem can easily bewilder man and machine. Optimizing the
assembly schedule of an automobile industry and finding an optimal layout for placing the logic
circuits in a computer chip are some examples. Blackbox optimization (BBO)—optimization in
the presence of little domain knowledge—tries to capture the characteristics of such problems.

Because of its practical importance, BBO has recently drawn increased attention. A large
number of algorithms have shown up in the literature, for example simulated annealing (Kir-
patrick, Gelatt, & Vecchi, 1983), genetic algorithms (Holland, 1975), and tabu search (Glover,
1989). These algorithms apparently differ from one another on many aspects. Their perfor-
mance and scope often vary widely from one problem to another. With all these new algorithms,
designed based on seemingly different principles, it is quite natural to ask whether any common
principle and common ground exist for approaching BBO.

This dissertation makes an attempt to answer this question. It introduces SEARCH (Search
Envisioned As Relation, and Class Hierarchizing)—an alternate perspective toward BBO. It
starts by noting that blackbox search is an induction problem, i.e., a matter of guessing based
on what is known. Induction is no better than enumerative table look-up when no relation

exists among the members of the search space (Mitchell, 1980; Watanabe, 1969). SEARCH
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realizes this, and it tries to exploit the properties of different relations that can be defined
among the members of the search space. It decomposes the search for optimal solution in BBO

into three components, searching in
1. relation space
2. class space
3. sample space

This decomposition lays the foundation of the SEARCH framework. A probabilistic and ap-
proximate framework is developed on this foundation to give SEARCH all its capabilities.
Both qualitative and quantitative analyses of this framework are developed here. By doing
this, SEARCH makes an attempt to answer some of the following questions: Can we bound the
success probability in BBO? Can we quantify the role of relations in BBO? For algorithms that
use a representation,! can we quantify how good it is for the given problem? Can we bound
the sample complexity in blackbox optimization? Both qualitative and quantitative answers
are provided. The relation between SEARCH and the PAC learning framework (Natarajan,
1991; Valiant, 1984) is discussed. Popular blackbox optimization algorithms, such as simulated
annealing and genetic algorithms, are also projected in the light of SEARCH. Natural evolution
can also be viewed as a typical BBO problem. This makes us wonder whether SEARCH tells
us anything new about the computational processes in natural evolution. The answer is yes, it
does. An alternate model of evolutionary computation is recently proposed (Kargupta, 1995a)
that, unlike most of the existing computational models of evolution, accounts for the role of
intra-cellular flow of information—the gene expression.?

The SEARCH framework has many implications on the approach toward solving BBO

problems. Solving a BBO problem requires an understanding of the three participants of the

process:
1. algorithm

2. problem

Yan auxiliary space defined by transforming the original search space.

DNA—RNA—Protein construction process during the transcription and translation is known as gene
expression.
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3. user

SEARCH identifies the different components of a BBO algorithm. It also provides us with an
understanding of problem difficulty in a quantitative manner. It answers the following questions:
How does SEARCH characterize difficult BBO problems? Is there a class of blackbox problem
that is solvable in polynomial sample complexity?® What is the role of user in blackbox search?
Again, both qualitative and quantitative arguments are used to answer these questions.

The second half of this dissertation addresses the issue of designing BBO algorithms. I fo-
cus on a particular class of genetic algorithms (GAs), called messy genetic algorithms (mGAs),
initiated in earlier studies (Deb, 1991; Goldberg, Korb, & Deb, 1989). Unlike simple GAs
(De Jong, 1975; Goldberg, 1989; Holland, 1975), messy GAs emphasize the search for appro-
priate relations among the members of the search space. Since historically the mGAs came
before the development of SEARCH, the mGAs deserve the credit for taking the right step in
the right direction. Although the original version of messy GA (Goldberg, Korb, & Deb, 1989)
successfully solved bounded difficult problems,* it adopted an enumerative initialization of re-
lations. Although the sample complexity was polynomial, it was still very expensive in terms
of practical use. The fast messy GA (fmGA) was introduced by (Goldberg, Deb, Kargupta,
& Harik, 1993) and this eliminated one bottleneck of mGAs. The fmGA brought some of the
benefits of implicit parallelism (Holland, 1975) to messy GAs without sacrificing the search for
appropriate relations in the messy GA. Carefully designed experiments are also provided to
demonstrate the performance of fmGA.

Chapter 2 introduces the SEARCH framework. After presenting a brief review of BBO, it
presents both informal and formal description of SEARCH. Chapter 3 presents the main impli-
cations of the previous chapter’s results. It develops an approach toward the main participants
in a blackbox search—algorithm, problem, and user. Chapter 4 presents the design of the fast
messy GA, after briefly reviewing the lessons from simple GA and messy GA. Chapter 5 first
presents the rationale behind the design of a test suite using our understanding of problem
difficulty and then presents the results of testing fmGA on different classes of bounded diffi-
cult problems. Chapter 6 describes the results of applying fmGA to track missile blip targets

number of samples needed to solve a problem grows polynomialy with the size of the problem, accuracy of

the solution, and the reliability.
*a class of problems that is solvable in polynomial sample complexity in SEARCH
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in different radar frames. Finally, Chapter 8 concludes this dissertation and outlines future

ramifications.
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Chapter 2

SEARCH: An Alternate
Perspective of Blackbox

Optimization

Blackbox optimization (BBO)—a special kind of optimization in which little knowledge about
the problem is assumed—has recently enjoyed a large increase in interest. Many different classes
of blackbox search algorithms have been developed. Simulated annealing (Kirpatrick, Gelatt,
& Vecchi, 1983) genetic algorithms (Holland, 1975), and tabu search (Glover, 1989) are some
examples. Despite the increasing interest for solving blackbox problems, each algorithm is a new
research field in itself. Some algorithms are quite general, while some of them are for special
purposes. Some emphasize the role of representation and some do not. The nature of the
search operators varies widely between algorithms. Some are content with local optimization
and some aspire to global optimization. In short, there exist few common principles, little
common language, little cross-fertilization, and almost no understanding of the fundamental
similarities and differences between BBO algorithms in current development and usage.

With all this activity and confusion it is reasonable to ask whether it is possible to create
a common perspective of BBO and discuss common design principles. The answer of this
chapter is yes. To support this claim, in this chapter I propose a probabilistic framework
called Search Envisioned As Relation, and Class Hierarchizing (SEARCH). SEARCH presents

an alternate perspective of probabilistic adaptive sampling search in BBO. It is not intended
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to be an exact model of one particular BBO algorithm; rather, its purpose is to capture the
essential computational aspects of BBO algorithms and explore their effects on the bounds in
efficiency.

The following sections of this chapter introduce the SEARCH framework. Section 2.1 in-
troduces blackbox optimization and briefly reviews some related works. Section 2.2 presents
a general informal introduction to SEARCH, and this is followed by a formal development
in Section 2.3. Section 2.4 quantifies the success probabilities of SEARCH. Section 2.5 spe-
cializes this framework for ordinal class and relation selection processes. I compute bounds
on success probability and sample complexity and explore the conditions of polynomial com-
plexity search in blackbox optimization. Section 2.6 discusses the correspondence between the
SEARCH framework and PAC-learning (Natarajan, 1991; Valiant, 1984). This is followed by
a projection of simulated annealing in the light of SEARCH in Section 2.7. Section 2.8 briefly
reviews the main points of an alternate model of evolutionary computation proposed using the
SEARCH framework (Kargupta, 1995a). Finally, Section 2.9 summarizes the major points of
this chapter.

2.1 Background

Although optimization has been addressed in both theory and practice for several centuries,
the methodology for solving optimization problems have often followed a pattern: Given a very
specific class of problems with some known properties, design an algorithm for solving this
class. Unfortunately, because of the ever-growing list of different optimization problems, the
process of designing new problem-specific algorithms is unlikely to terminate. Designing algo-
rithms for solving blackbox problems—optimization problems with little knowledge available
about the problem domain—offers an alternate approach. By assuming little knowledge about
the problem, algorithms designed using this approach aspire to solve a more general class of
problems.

The purpose of this section is to introduce BBO and to review some earlier works. Section

2.1.1 introduces BBO and Section 2.1.2 reviews some existing works on BBO.
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2.1.1 Blackbox optimization

Almost every discipline of engineering and science can make use of optimization algorithms.
As a result, a large number of optimization algorithms have been developed and applied to
different problems. For example, smooth convex functions can be efficiently optimized using
gradient search techniques (Papadimitriou & Steiglitz, 1982) The simplex algorithm (Dantzig,
1963) performs well for a large class of linear programming problems. Dynamic programming
techniques (Dreyfus & Law, 1977) work well when the optimization problems are stage decom-
posable. Several analyses have been done for local and global optimization of real functions
that are Lipschitz continuous with a known Lipschitz constant (Térn & Zilinskas, 1989; Vava-
sis, 1991). This approach of operations research is characterized by a pattern: Given a class
of problem, find an algorithm to solve it. Unfortunately, this approach of designing algorithms
that work only for a specific class of problems does not ever seem to end, as the list of different
types of optimization problems continues to grow. Moreover, determining the class of problems
in which a real-world optimization problem belongs is often as difficult as finding a reasonable
solution for the problem. The ever-increasing computing capability has also fueled the desire
for solving large-scale problems with little prior knowledge about the objective functions.
This growing demand for algorithms to solve new classes of difficult optimization problems
and the never-ending process of designing algorithms that work for a restricted class of problems
suggest the need for an alternate approach. The applicability of the previously mentioned
optimization algorithms is very restricted, because these algorithms make assumptions about
the properties of the objective functions that are often too restrictive. Therefore, one step
toward designing optimization algorithms that work for a large class of problems is to reduce
assumptions about the objective function. Since these algorithms make little assumption about
the objective function, they should be able to solve problems using as little domain knowledge
as possible. These problems would fall into the general class of blackbox optimization (BBO)
problems, where little knowledge about the objective function is assumed. In this model of
optimization, the objective function is often available as a black box, i.e., for a given z in
the feasible domain, it returns the function value ®(z). No local or global information about
the function is assumed. Let us denote the finite input and the output spaces by A and Y,

respectively. The general blackbox optimization problem can be formally defined as follows.
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Given a blackbox that somehow computes ®(z) for an input z,
LI N (2.1)

The objective of a maximization problem is to find some z* € A" such that ®(2*) > &(z) for
all z € X'. Performance of an optimization algorithm in this model depends on the information
collected by sampling different regions of the search space. The following section presents a

brief review of some previous studies related to the work presented in this chapter.

2.1.2 Brief review of previous works

By definition, a strict blackbox search algorithm must work without any prior information
about the structure of the objective function. Although the field of global optimization has a rich
volume of literature, many studies are severely restricted because of their assumptions about the
properties of the objective function (Schoen, 1991), and therefore it can be questioned whether
they can really be called BBO algorithms. The objective of this section is to present a brief
account of some previously developed algorithms that make little use of domain information
about the problem. First, I present a classification of BBO algorithms based on whether the
algorithm is deterministic or non-deterministic. Next, I concentrate on the non-deterministic
or stochastic methods. Finally, I present a brief description of some previous efforts to relate
different BBO algorithms with one another and to understand them on common grounds.
Although there may be several ways to classify optimization algorithms from different points
of view (Térn & Zilinskas, 1989), one natural candidate is classification based on the determin-
istic or non-deterministic nature of the search algorithm. Several earlier efforts (Archetti &
Schoen, 1984; Dixon & Szegd, 1978; Gomulka, 1978) suggested classification of global optimiza-

tion algorithms using this approach. BBO algorithms can be similarly classified as

e Deterministic approaches
e Stochastic approaches

— blind random search methods

— adaptive sampling search methods

Each of these approaches will be briefly described in the following.
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Deterministic enumeration of members of the search space is one method. Unfortunately, for
most of the interesting optimization problems, deterministic enumeration becomes practically
impossible because of the growth in the search space.

On the other hand, the stochastic algorithms introduce some random elements into the
algorithm and try to solve the problem by relaxing the guarantee of the deterministic enumer-
ative search. This relaxed nature of stochastic search algorithms makes them more suitable for
practical applications.

Blind random search (Schoen, 1991; Térn & Zilinskas, 1989) is probably the simplest class
of algorithms within the family of stochastic BBO algorithms. The Monte Carlo and multistart
algorithms are examples of this kind of algorithm. The Monte Carlo algorithm generates random
samples from the search space according to a fixed distribution. Multistart methods make use
of local search techniques in addition to the Monte Carlo sample generation process. Although
algorithms of this class are simple in nature, they are likely to be suitable for the worst case
when different regions of the search space cannot be qualified and when evaluating a particular
member of the search space does not provide information about another member.

Adaptive sampling search techniques try to exploit the information gathered from samples
taken from the search space. They try to qualify different regions of the search space in terms
of the fitness values of their members and use that information to decide which region to
explore next. Bayesian algorithms, clustering methods, simulated annealing (SA) and genetic
algorithms (GAs) are examples of this class of algorithms. This dissertation mainly considers
this class of algorithms.

Bayesian algorithms (Betro, 1983) try to develop a statistical model of the objective function.
These algorithms do not explicitly construct a function; instead, they use a random variable
to minimize the expected deviation of the estimate from from the real global optimum. The
expected value of the random variable is set to the best estimate of the function and the variance
of the random variable capture the uncertainty about this estimate. The problem of Bayesian
algorithms are that they are often complicated and involve fairly cumbersome computations,
such as computing the inverse of the covariance matrix (Térn & Zilinskas, 1989).

Clustering methods (Rinnooy Kan & Timmer, 1984; Térn & Zilinskas, 1989) use a Monte
Carlo sample generation technique. Cluster analysis algorithms are used to identify local min-

ima. This is followed by a local search for each local optimum. Clustering methods have been
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found useful for many global optimization problems (Hart, 1994; T6rn & Zilinskas, 1989). How-
ever they are likely to perform poorly when the objective function is multimodal and there are
many local optima (Hart, 1994).

Since the early 80s, the simulated annealing (SA) algorithms (Kirpatrick, Gelatt, & Vecchi,
1983) and their variants have been used for solving blackbox problems. The natural motivation
behind SA is the statistical behavior of molecules during the crystallization process in annealing.
SA considers one sample at a time and this sample represents the state of the algorithm. A
neighborhood generator is used to generate new samples. SA makes use of a probabilistic
comparison statistic (the Metropolis criterion) for deciding whether the new sample should be
accepted as the state of the algorithm. The Metropolis criterion dynamically changes along
with a parameter known as temperature. The temperature takes a high value in the beginning
and gradually decreases according to a chosen cooling schedule. The acceptance probability is
often very high in the beginning, when the temperature is high. The acceptance probability
decreases as the temperature reduces. SA has a proof for asymptotic convergence to the optimal
solution (Kirpatrick, Gelatt, & Vecchi, 1983) SA has been applied to a wide range of blackbox
problems. Many of them reported very promising results. However, in the recent past several
negative results have also come out (Dueck & Scheuer, 1988; Ferreira & Zerovnik, 1993).

Genetic algorithms (GAs) (De Jong, 1975; Goldberg, 1989; Holland, 1975), evolutionary
programming (Fogel, Owens, & Walsh, 1966), and evolutionary strategies (Rechenberg, 1973)
are also getting increasing attentions for dealing with global optimization in blackbox problems.
Design of the simple genetic algorithm (GA) is motivated by natural evolution. Unlike the SA,
it emphasizes the role of representation and the interaction between the representation and
perturbation operators. GAs use the representation to implicitly divide the search space into
several non-overlapping classes often called schemata (Holland, 1975). Unlike SAs, GAs work
from a population of samples, with each sample often represented as sequences. This population
of sequences is used to evaluate different schemata. New samples are generated by crossover and
mutation operators. Crossover also implicitly combines the better schemata while generating
new samples. (GAs have been successfully applied to different classes of problems (Goldberg,
1989). However, the simple GA suffers from several limitations. Although the simple GA
realizes the role of representation that induces relations among members of the search space,

the simple GA does not really search for appropriate relations. Moreover, the evaluation of
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schemata is also very noisy in the simple GA. These issues will be revisited and elaborated in
Chapter 4.

With all these different BBO algorithms in our arsenal, it is quite natural to ask whether
they can be studied on common grounds using common principles. Several previous efforts have
been made to address this question. Although Holland’s (1975) framework for adaptive search
was primarily motivated by evolutionary computation, the underlying concepts of search based
on schema processing and decision making are fundamental issues that are equally relevant in
the context of any other adaptive BBO algorithms. In fact, Holland’s work (1975) is the root
of the current thesis. Davis (1987) made an effort to put literature on SAs and GAs under a
common title. Unfortunately, this book did not make any direct effort to link them; rather, it
simply discussed them separately. Sirag and Weisser (1987) combined several genetic operators
into a unified thermodynamic operator and used it to solve traveling salesperson problems.
However, this paper did not study the fundamental similarities and differences between SAs and
GAs. Goldberg (1990) addressed this issue. He presented a common ground to understand the
effects of the different operators of SAs and GAs. He also proposed the Boltzmann tournament
selection operator, which attempts to achieve Boltzmann distribution over the population.
Mahfoud and Goldberg (1992) introduced a parallel genetic version of simulated annealing called
parallel recombinative simulated annealing. This algorithm attempted to harness the strengths
of both SAs and GAs. Recently Rudolph (1994) developed a Markov chain formulation of SAs
and GAs for analyzing their similarities and differences. Jones and Stuckman (1992) made an
interesting effort to relate GAs with Bayesian approaches to global optimization. They noted
the similarities and differences between these two approaches and concluded that they share
many common grounds. They also developed hybrid algorithms that try to harness the strengths
of both approaches. Recently Jones (1995) proposed a framework to study the correspondence
between evolutionary algorithms and heuristic state space search of graph theory. In this
approach the search domain of the objective function is viewed as a directed, labeled graph.
Jones and Forrest (1995) also proposed the fitness-distance-correlation measure for quantifying
search difficulty and applied this measure to several classes of objective functions.

Unfortunately, very few of the previous works actually made a quantitative effort to study
the computational capabilities and limitations of BBO. Little attention has been paid to the role

of relations in BBO, which is essential for transcending the limits of random enumerative search.
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We still lack any common framework that describes these different algorithms in terms of the
basic concepts of theory of computation. The SEARCH framework, which will be introduced
in the remainder of this chapter, attempts to do that. The development of SEARCH will
require some familiarity with concepts of set theory and computational complexity. Readers
not familiar with this field should read Appendix A or a standard textbook such as Cormen,

Leiserson, and Rivest (1990).

2.2 SEARCH: An Informal Picture

SEARCH presents an alternate picture of blackbox optimization in terms of relations and
classes that can be constructed among the members of the search space. SEARCH is also a
formal framework that helps us quantify different aspects of BBO, such as sample complexity,
problem difficulty, and many more. However, the fundamental ideas are quite simple and can
be understood without introducing any formal terms. The purpose of this section is to provide
such an introduction. Section 2.2.1 presents a brief motivation for this section. Section 2.2.2

considers an example optimization problem and illustrates the underlying concepts in SEARCH.

2.2.1 Motivation

Some existing BBO algorithms try to find the optimal solution by directly searching the original
domain of optimization variables. Samples are often used to estimate the best solution of the
search space. In these approaches, a BBO algorithm always searches for a better solution
compared to the current best solution. It takes one or more samples and then decides how to
choose the next sample. Although the task is certainly non-trivial, the approach of finding the
best solution by iteratively updating the best estimate has a fundamental problem. Sampling
one particular point from the search domain does not necessarily tell us anything about another
point. When a BBO algorithm makes a decision to sample another member from the domain,
it is performing induction—the process of hypothesizing the premise from the consequences
(Michalski, 1983). This is because we are first observing the objective function values for the
members of the sample set and then trying to determine whether an unknown point should
have a higher or lower objective function value. In other words, it is guessing; it is a proven

fact that induction is impossible when no relation exists between the members (Mitchell, 1980;
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Search space after relation construction

\ Orig%%arch space

Figure 2.1: Classification of the search space using relations.

Watanabe, 1969). If no prior relation is assumed between them, there is little reason to choose
one member over others, and the blackbox search will be no better than the random search
unless the algorithm assumes and exploits some relations among the members of the search
domain.

If assuming and exploiting relations among the members of a search space is essential, then
it will be wise to isolate this possibility, study it, and see how it can be used to the fullest. The
SEARCH framework does that. Recall that SEARCH stands for Search Envisioned As Relation
and Class Hierarchizing. Searching for better relations and better classes are the primary fronts
emphasized in SEARCH. Relations classify the search space into different regions. Figure 2.1
presents a schematic diagram of the search spaces divided into a set of non-overlapping classes
after a relation is defined. Some relations classify the search space in such a way that it is
relatively easier to detect the class containing the optimal solution. SEARCH tries to establish
such relations among the members of the search space. Instead of directly searching for the
best solution from the beginning, SEARCH tries to find these relations and then use them to
locate the classes containing the optimal solution. Although the scope of this framework is quite
general, in the following section I consider a simple optimization problem represented using a

binary sequence space to explain the main concepts in simple terms.
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Table 2.1: A sample set.

x| (x)
1000 1
1001 2
1010 0
1011 1
1110 3

2.2.2 An illustration

Consider an unconstrained optimization problem represented using four bits. Table 2.1 shows a
five-member sample set; out task is to determine the optimal solution. All we know is that this
sample set and the search domain defined by the binary representation are discrete. With no
other information about the objective function available, this task seems to be very difficult. In
fact, many established algorithms of operations research such as simplex, ellipsoid, and convex
programming, will be clueless when faced with this problem. Unfortunately, we need to deal
with it and this is what blackbox optimization is all about.

A more optimistic picture may be developed by carefully considering of the samples and
then guessing possible relations among them. We can try to correlate the regularities among the
binary representation of the members with the grades in objective function values by making
inductive hypotheses. For example, strings 1001 and 1000 differ only at the rightmost bit
position, and the objective function value of 1001 is greater than that of 1000 by 1. Similarly,
the objective function value of 1011 is greater than that of 1010 by the same amount, 1. These
two observations may lead us to hypothesize that having 1 in the rightmost bit position may
lead to higher objective function values. Another possible hypothesis may be that a 0 in the
second bit position from the left and 1 in the rightmost position may be the features of the good
solutions in this representation, since this is a feature of both 1001 and 1011. However, the last
member of the sample set 1110 has a much higher objective function value. This may help us
in eliminating our second hypothesis that a 0 in the second from left position is associated with
better solutions. Among all these hypotheses, one possibility is that three consecutive 1s in the
first three bit positions from the left are good features, since 1110 has a higher objective function

value; 1 in the rightmost position also results in increasing objective function value. These two
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Table 2.2: A function in 4-bit representation.

z | ¢(x)
0000 | 2.5
0001
0010
0100
1000
0011
0101
1001
0110
1010
1100
0111
1011
1101
1110
1111

= W Pk P 2 O OO NNDNF— —= R~ W

hypotheses suggest that the string 1111 is the optimal solution. This turns out to be the correct
solution of the problem. Table 2.2 defines the objective function. This function is constructed
in such a way that in the chosen representation, it can be decomposed into two subproblems:
(1) the first three bit positions from the left together and (2) the rightmost bit position. The
search for the optimal solution can therefore be viewed as the search for appropriate relations
or regularities among the members of the sample set. This is the fundamental concept in
SEARCH.

One way to talk about these regularities is through using a notation of patterns that may be
defined using equivalence relations and classes. The four-bit representation used in our example
defines 2* = 16 relations corresponding to the different partitions. Every partition defines a
unique equivalence relation in this space of binary strings. For example, ### f (where f stands
for a fixed bit that matches for equivalence) is an equivalence relation defined over the last bit
position. Relation ##7#f divides the search space into two classes, ###1 and ###0.

Now that we have a precise way to talk about the regularities among the members of the
sample set, we need to qualify these regularities in terms of the objective function values. In

other words, we want to be able to say that a particular class is better than some other class in
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Table 2.3: Members of class ###1 and ###0 and the class average statistics.

iy ###0

z | ®(z)| = d(x)
1111 | 4.0 | 1110 3.0
1101 | 1.0 | 1100 0.0
1011 | 1.0 | 1010 0.0
0111 | 1.0 | 0110 0.0
1001 | 2.0 | 1000 1.0
0101 | 2.0 | 0100 1.0
0011 | 2.0 | 0010 1.0
0001 | 3.0 | 0000 2.5
Avg. | 2.0 | Avg. | 1.0625

Table 2.4: Average objective function values of the classes in fff#.

Class | Average
1114 3.5
000# 2.75
1004 1.5
001# 1.5
010# 1.5
1104 0.5
1014 0.5
0114 0.5

a certain sense. Two classes may be compared by first defining a statistic over them. Table 2.3
shows the members of the two classes ###1 and ###0. Note that every member of ###1
has a higher objective function value compared to the corresponding member of ###0. This
is just one way to compare the two classes. Comparing the class average objective function
value may be a different way to look at them. Table 2.3 also shows the class average statistic
for these two classes. Since ###1 contains the optimal solution, the relation ### f classifies
the search space in such a way that correct decision making is possible with any one of the
statistics just described. Similarly, the relation fff# also identifies the class 1114 to be the
better class using the class average statistic. Table 2.4 shows the class average statistic for
all the classes defined by relation fff# and, as we see, the class 111# is ranked highest. On
the other hand, some relations such as f### and # f## do not correctly identify the class

16
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Table 2.5: Class average statistics of the classes defined by relations f### and # f##.

tH#+# it
Class Avg. Class Avg.
O0### | 1.5625 | #0#4 | 1.5625
1### 1.5 #1144 1.5

containing 1111 as the best class, using the same class average statistic. Table 2.5 shows the
class average statistics for classes defined by these two relations, and it shows that the average
statistics for 0### and #04## are greater than those of 1### and #1473 respectively. For a
given statistic for class comparison, some relations may classify the search space in such a way
that the class containing the optimal solution is ranked higher than other classes; therefore,
correct decision making in choosing the right class is possible. These relations are appropriate
for classifying the search space from the optimization perspective. This is an important concept
in SEARCH and therefore, we shall give it a name. If a relation ranks the class containing the
optimal solution in such a way that correct decision making is possible, then we say that this
relation properly delineates the search space. If a relation does not do that, it does not properly
delineate the search space; One may also say that a relation does not satisfy the delineation
requirement.

As I noted earlier, relations do not necessarily have to come from representation. Neigh-
borhood generation heuristics and operators can also be used to define relations. For example,
consider the k-opt algorithm (Lin & Kernighan, 1973) used for solving the traveling salesperson
problem. This algorithm makes use of a k-change neighborhood generation heuristic that gen-
erates a set of neighbors of a member of the search space and keep the member that is locally
optimal with respect to the k-change neighbors. In this algorithm the relation among the search
space members can be defined by this k-change neighborhood generation heuristic. The simu-
lated annealing (SA) is another class of algorithm often used for solving blackbox optimization
problems. Again, in SA, the neighborhood generation operator can be viewed as a source of
relations. Since relations can be introduced through several means, the SEARCH framework
considers a set of relations as an abstract entity, independent of their sources. Among the
members of this set of relations, some relations are useful, since they properly delineate the

search space and thereby facilitate correct decision making; the rest of the relations do not and
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Table 2.6: Class average statistics of the classes defined by relations ###f and # f##,
computed based on the sample set.

#H# #
Class | Avg. | Class | Avg.
HH#EHL | 15 | #4#0# | 15
###0 | 1.33 | #4#1# | 1.33

Table 2.7: Class average statistics of the classes defined by relations fff#, computed based
on the sample set.

ff#
Class | Avg.
1114 | 3.0
1004 | 1.5
101# | 0.5

therefore, they are not as useful from the perspective of optimization. The smaller the set of
relations, the more likely it is that these relations will fail to properly delineate for different
kinds of problems. A particular set of relations may be suitable to properly delineate a certain
kind of search space, although it may fail to do so for other problems. Therefore, the “richer”
the set of relations, the more likely it is that some of them will properly satisfy the delineation
requirement. The term “richer” needs some explanation. Simply increasing the size of the set of
relations introduces a different problem. For every BBO, an algorithm has to determine which
relations satisfy the delineation requirement. Therefore, it is a search problem. The larger
the set of relations considered by the algorithm, the more expensive the search for appropriate
relations becomes. This is clearly a trade-off and the term “richer” reflects a qualification of
the ease to find a relation that properly delineates the search space. One way to quantify this
qualitative term is to measure the ratio of the relations that properly delineate the search space
and all possible relations under consideration of the algorithm. This ratio will be called the
delineation-ratio of the problem with respect to the chosen class comparison statistic and the set
of relations. SEARCH realizes the importance for searching relations that properly delineate,

and it makes an explicit attempt to capture its effect on the overall success of the algorithm.
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In a sampling-based algorithm, the classes can only be compared based on a small subset
of the set of all members of these classes. Therefore, the detection of better relations and
classes has to depend on the quality of sampling; decision error is possible unless the sampling
is extensive enough. First of all, SEARCH tries to construct an approximate ranking among
the classes defined by a relation. Let us illustrate this using the sample set given in Table 2.1
for our example problem. Table 2.6 shows the class average statistic for the classes defined
by relations ### f and ## f# based on the sample set shown in 2.1. Based on the limited
information from the sample set relations ### f and ## f#, we shall rank the classes ###1
and ##0# highest respectively. Since we already know that 1111 is the optimal solution of
this problem, clearly relation #4 f# is providing a ranking that can lead to failure in finding
the optimal solution. As we saw earlier, relation ## f# is one of those relations that do not
satisfy the delineation requirement. However, in absence of any prior information, determining
which relation produces a correct ranking is a stochastic decision-making problem. One possible
way is to define a measure that can be used to compare different relations, just like the class
comparison statistic. For example, one such measure may favor those relations that rank
classes in such a way that the top-ranked class is much “better” than the second-best class
in the sense of the class comparison statistic; let us illustrate this statistic using our example
problem. Consider the relations ## f# and fff# and their sample class average statistic
shown in Tables 2.6 and 2.7, respectively. Note that table 2.7 shows only three classes since no
information about the other classes can be gathered from the given sample set. The difference
between the class average statistics of ## 14 and ##04# is 0.17. Similarly the difference
between the class average statistics of 1114 and 1004 is 1.5. Since 1.5 > 0.17 according to this
relation comparison statistic, fff# is better than ## f#. Different measures for comparing
relations can be defined. SEARCH recognizes the importance of both correct ranking of classes
and correct choice of relations and considers their effect on the overall success probability of an
algorithm.

Once the classes are ranked and the corresponding relation is hypothesized to be one that
properly delineates the search space with high confidence, then the higher-ranked classes are
selected for future consideration and the low-ranked classes are discarded. However, detections
of appropriate relations and selection of better classes are not alone sufficient. This information

about the classes that are concluded to be promising and those that are discarded from further
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consideration needs to be exploited during future evaluation of new relations. Let us illustrate
this idea using our example problem. Let us say that we have identified that relations fff#
and ##7F# f properly delineate the search space with M; = 2 and M; = 1, respectively. The
top two ranked classes in f f f# are identified as 111# and 100#. Similarly let the top ranked
class in relation ###f be ###1. Now let us consider the evaluation of the relation ffff.
This relation divides the space into 16 singleton classes, in which each of the classes is basically
a ground member of the search space. However, the class ranking information from relations
Sff# and #F### f can be used to conclude that for relation ffff only the following classes
need to be considered: 111#N###1L and 100# NF###1. In other words, although the relation
fFff actually defines 16 singleton classes, the only two classes that need to be considered are
1111 and 1001, and the rest of the classes can be neglected. Note that this pruning of classes
is permissible only as long as our hypothesis about the decomposiblity of relation ffff into
relations fff# and ###f is correct. This process of exploiting the information about the
classes defined by some relations, for pruning out some classes from a different relation by
computing set intersections, plays an important role in SEARCH. SEARCH gives this process
a particular name—resolution.

Resolution can be implemented in several ways. For example, in SA, as the algorithm
moves from one state to another, some features of the previous state may remain unchanged,
and therefore, the new state may be a combination of some old and new features. In SAs the
resolution of class features is implicitly distributed over time. In genetic algorithms (GAs), the
crossover operator directly combines the features of parent strings to produce offsprings. In a
decision tree such as ID3 (Quinlan, 1986), the individual features are sequentially considered,
and gradually, a hierarchical decision tree is developed that can be used for classification. The
hierarchy of features in a decision tree describes how features should be combined with one an-
other and defines the resolution process in SEARCH. As we see, resolution can be implemented
in several ways. However, since the underlying process is very similar to set intersection, quan-
titative analysis of SEARCH will treat it as an abstract intersection operation. Therefore, in
SEARCH, resolution computes set intersection among different classes.

The ultimate objective of a BBO algorithm is to find the optimal solution. BBO algorithms
that directly search for optimal solution in the sample by updating their best estimate return

the answer found directly from the sample space. However, in SEARCH, it is quite different.
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Figure 2.2: Decomposition of blackbox optimization in SEARCH.

SEARCH finds the solution from the class space. When a singleton class is generated that
ranks highest, SEARCH returns that class as the optimal solution. Singleton classes can either
be produced by resolution when there is some degree of decomposibility or by the relations
themselves in the worst possible case.

The above discussion presented an informal account of the different aspects of the SEARCH
framework. The remaining part of this section recapitulates the main points.

SEARCH explicitly reduces BBO into searching along three dimensions: (1) relation space,
(2) class space, and (3) sample space. Figure 2.2 illustrates this decomposition for a portion of
the 4-bit example problem. The relation space contains the relations that are under considera-
tion of an algorithm for classifying the search space. Some of them properly delineate the search
space, and some of them do not. Therefore, the algorithm must search for the former kind of
relation from the relation space. The class space contains the different set of classes defined by
each of these relations. SEARCH tries to construct an ordering among the classes belonging
to a particular relation for detecting the class that contains the optimal solution. This search
for better classes constitutes another dimension of SEARCH. The sample space contains the
sample set that is used to evaluate the classes. Since samples are used to evaluate specific
classes, the sample generation process needs to be controlled. Moreover, the same sample set
can be used to evaluate the classes belonging to different equivalence relations. This is simply
because different relations divide the same search space in different ways. Therefore, the same
set of samples just needs to be arranged differently for evaluating different relations. This has
a close relation with the so-called implicit parallelism in GAs, noted by Holland (1975). This

will be elaborated further in later chapters. The resolution computes the intersection classes of
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Figure 2.3: Different components of SEARCH framework.

two given classes and thereby exploits any possible decomposibility among the relations. The
class space returns the optimal solution, which is a singleton class.

Figure 2.3 shows a process-oriented picture of SEARCH. Relations, classes, and samples
are viewed as separate entities. Relations are evaluated based on how they classify the search
space. Classes are evaluated using samples taken from the domain of optimization. Resolution
eliminates irrelevant classes from the set of all classes defined by a relation. Good relations
are preserved and bad relations are discarded. Similarly, in the class space, good classes are
selected and bad ones are rejected. The optimal solution is returned from the class space.

This informal presentation has primed the pump with a concrete, if somewhat loose, ex-
position of the basic ideas in SEARCH. The use of a bit-string example might make it seem
as though the framework to be developed is limited to binary representation or some specific
algorithm. This is not the case. 1 will consider different algorithms with different kinds of
source of relations in the due course, which will convince the reader about the generality of the

underlying concepts. I now turn to a formal development of a general framework—SEARCH.

2.3 SEARCH: The Formal Development

The previous section laid out the SEARCH perspective of BBO as a process of searching for
better relations and classes. The presentation was informal and designed mainly for conveying
the major concepts. Moreover, the ideas were conveyed mostly using an example problem in

sequence representation. However, they can be rigorously cast on a more general ground, which
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is the objective of this section. First, Section 2.3.1 presents a formal overview of different aspects
of SEARCH. Unlike the previous section, the overview in this section will be given using the
formal symbols that will set the stage for the subsequent analysis of SEARCH. Section 2.3.2
presents a detailed description of the different components of SEARCH and formalizes the
definitions of different terms introduced earlier. It first addresses the classification, ordering,
and selection of classes. Next, it considers the process of selecting better relations. Finally, the

resolution process is described.

2.3.1 Overview
Here we overview the major components of SEARCH:

1. classification of the search space using a relation

2. sampling

3. evaluation, ordering, and selection of better classes
4. evaluation, ordering, and selection of better relations

5. resolution

Each component is discussed in more detail in the following paragraphs. To do so requires some
notation that we shall use throughout the remainder of the chapter. A relation is denoted by
r;, where 72 is the index of the set of all relations, ¥,, under consideration of the algorithm.
Let C'; be the collection of subsets, created by relation r;. The set of relations 5, actually
used by an algorithm to solve the given BBO is a subset of ¥,.. Denote the members of C;
by Ci;,C4;-Cn, i, where the cardinality of the class C; is ||Ci]| = N;. Therefore, C; is a
collection of classes.

Once the relation is used to construct C; the next step is to evaluate the classes in C;.
To do that we need samples from the domain of optimization. A perturbation operator P
is defined as an operator that generates new samples. This operator can be either a random
sample generator or a smarter one that exploits information from the relation, class, and sample
memory.

The next step is to construct an ordering among the classes in ;. To do so, we need a way

to compare any pair of classes. A statistic 7 can be computed for each of the classes, and they
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may be compared on this basis. This statistic will be called a class comparison statistic. This
class comparison statistic can be used for computing a tentative ranking among the classes in
(';. For certain choices of 7, some classes may not be compared with other classes. This means
that sometimes a total order may not be constructed. Therefore, in general, a statistic 7 can be
used to construct a partial order on C;. Let us denote this partially ordered collection by Cj;.
Once the ordering is constructed, the next goal is to select some 1 < M; < ||C|| top ranked
classes from C;1}. M, represents the total number of top ranked classes that will be selected
for future considerations. The exact choice of M; depends on the decision error probability in
choosing an appropriate relation and ordering construction among the classes. For example, if
sampling is insufficient, the ordering of classes cannot be relied upon with high confidence, and
drastic elimination of classes may not be appropriate. Therefore, a relatively larger value of M;
may be used. These M; classes constitute the updated version of the class search space.

Next, this ordering among the classes is used to evaluate the relation r; itself. Different
kinds of statistics can be used to compare relations with one another. I denote this relation
comparison statistic by 7, and call it a relation comparison statistic. This statistic for relation
r; is now computed. The set of all relations currently under consideration is ordered based on
this statistic. Note that, again, this ordering does not have to be a total ordering. The top M,
relations are kept for future consideration and the rest are discarded, in a manner very similar
to what we did for the classes.

Not all the classes defined by a relation need to be considered. As more and more relations
are evaluated, the information gathered may be used to prune out different classes before
evaluating a new relation. Let rg be a relation that is logically equivalent to vy A ro, where rq
and ry are two different relations; the sign A denotes logical AND operation. If either of vy or
ro was earlier found to properly delineate the search space with certain value of M;, then the
information about the classes that are found to be bad earlier can be used to eliminate some
classes in rg from further consideration. Blackbox algorithms often implement a resolution-like
process to take advantage of any such possible decomposibility. If the chosen relation r; can
be decomposed into a collection of different relations, denoted by Ugrg, then resolution can
eliminate bad classes using the information collected from possible earlier evaluations of some

relations in Ug7ry.
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Repeated iterations of the above steps result in gradual focusing into those regions of the
search space which look better using the chosen class and relation comparison statistics. The
set of all these relations r;, 7,41, ... used to solve the problem is denoted by 5,. Whether or not
the algorithm approaches the globally optimal solution, depends on success in finding proper
relations, better classes, and sufficient sampling.

The following section presents a detailed formal description of the different aspects of the

SEARCH framework.

2.3.2 SEARCH: The detailed picture

The objective of this section is to present a quantitative picture of SEARCH and formalize
the definitions introduced earlier. The definition of a better relation requires defining what we
mean by better classes. Therefore, the decision making in the class space is considered first, in
Section 2.3.2.1. Section 2.3.2.2 considers the class selection process. This is followed by Section
2.3.2.3 that discusses the relation search. Finally, Section 2.3.2.4 presents the resolution process

of SEARCH.

2.3.2.1 Classification and ordering of classes

This section considers the decision-making process among the classes. Classification of the
search space requires defining relations. A relation can be defined using different sources, such
as operators and representation. In this section I assume no specific source of relations and
simply consider V¥,, a set of relations, as an abstract entity provided to the search process.
However, I continue to give illustrative examples whenever required, using relations defined by
sequence representation.

Let C; be the collection of classes created by some relation r;. Denote the members of ()
by C14,Cay,...Cn, i, where ||C5|| = N;. Once a relation r; is used to define C;, the collection of
classes, each of its members needs to be evaluated first. Since we are interested in the relative
“goodness” of the classes with an ultimate goal to pick up some and reject the rest, a statistic
that compares any two classes can serve our purpose. If 7 is the class comparison statistic
used to compare any two subsets C';; and C};, then given any two subsets, there must exist
an algorithm 7 that returns the resulting order among the subsets when compared on the basis

of 7. It may also be possible that the two classes cannot be compared based on 7. The
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NN

Figure 2.4: Hasse diagram representation of C;(left) and C;(right).

relation constructed among two ordered subsets of C; is represented by <7. In other words,
when C;; and C}, ; are compared to each other, then either C;; <7 Cy; or C}; <7 C;;, or they
cannot be compared. When C} is partially ordered on the basis of <7, it can be represented
by a Hasse diagram. Figure 2.4 (left) illustrates this representation. In a Hasse diagram, the
vertices are the members of a poset (partially ordered set); C ; is drawn above Cy ; if and only if
Ch,,Ch € Cyand Cq; <7 C;. We can say that Cy ; covers Cy ; if C ;,Cq; € Cy, Coy <7 Chy,
and no element Cs; € C; satisfies Cy; <7 C3; <7 (1;. The depth of a node, C;; in a Hasse
diagram is the minimum number of links that need to be traversed to reach C;; from any node
at the highest level. Note that this ordering depends on the chosen class comparison statistic.

Let us consider our 4-bit problem again to illustrate these ideas. The partition ff##
divides the search space into four classes, 11##, 10##, 01##, and 004##. If we compare
these classes on the basis of the mean values of the objective function values of the members
calculated in Table 2.8, then they can be ordered as shown in Figure 2.5 (left). Now define a
statistic 7 such that Cy; <7 (' ; if the largest objective function value of Csy; is less than or
equal to the minimum objective function value of €' ;. The minimum and maximum values of
the classes 11##, 1044, 01##, and 00## are shown in Table 2.8. Now note that the partial
order constructed using this statistic as shown in Figure 2.5 (right) is different from the partial
order shown in Figure 2.5 (left).

In a sampling-based search, the partial-order construction process is based on a finite set

of samples taken from each of the subsets, 'y ;,C3;,...Cn, ;. Let us denote the approximate

7
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Table 2.8: Different class comparison statistics for the classes in ff#4.

Class | Average | Min | Max

11## | 2.0 0 | 4.0
1044 | 1.0 0 | 2.0
0l1## | 1.0 0 | 2.0

0044 | 2.125 | 1.0 | 3.0

O01## 10##

Figure 2.5: Ordering among classes for different class comparison statistics: (left) Comparison
by average of objective function value. (right) Cy; is less than Cy; if the minimum objective
function value of (' ; is greater than maximum value of C'y ;. Table 2.8 presents the correspond-
ing statistic measures of the classes considered here. This figure illustrates that the ordering
among the classes can change depending upon the choice of the particular statistic.

descriptions of these classes using the sample sets by C;,Cy;,...CnN,; by Cl7i7627i7 .. .CA'NM.
Let ;1 be the ordering of classes from relation i. Denote the class at rank b from the bottom
of this ordering by CTy; ;. This means the top ranked class in this ordering is denoted by Cpy ;.
he partial ordering constructed using the sample estimates may be different from the actual
ordering. Figure 2.4 (right) shows that the partial ordering constructed from sample estimates

may differ from the actual ordering.

2.3.2.2 Selection of better classes

Once the classes are partially ordered based on <7, the next immediate objective is to select
M; “top” subsets. Since (Y[} is a partial order, the notion of “top” needs to be properly

defined. This is an implementation-specific issue. One possible way to define this may be
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based on the depth of a subset in the Hasse diagram. For the current purpose, I assume that
there exists a subroutine TOP(Cj[, M;) which returns the set of “top” M; subsets from the
collection Cj}. In our 4-bit example problem, with class objective function value average as
the comparison statistic (as shown in Figure 2.5 (left)), TOP(Cj[p,2) will return the top two
classes, {00##, 11##}. Denote the particular subset that contains z*—the globally optimal
solution—by C ;. If we denote the ordered collection of sample sets CA'LZ', 6272'7 .. .CA'NM by CA'Z»[],
then we would like CA'M' to be one among the collection of classes returned by TOP(CA'Z'[], M;).
Unfortunately, this is very unlikely, unless C ; itself is not within TOP(Ci[], M;). This sets the
stage for introducing the notion of inherently better or worse relations with respect to a given
problem, a class comparison statistic, and memory size. This is considered in the following

section.

2.3.2.3 Selection of appropriate relations: The delineation property

A relation is not appropriate with respect to the chosen class comparison statistic and the BBO
problem if the class containing the optimal solution is not one among some top-ranked classes,
ordered based on this statistic. If the class (s ; is not among the top M; classes, the algorithm is
not likely to succeed (neglecting any chance that may rank CA'M' higher than its actual ranking).
Let us quantify this requirement of a relation to be appropriate by a function DC(r;, 7T, M,).
This function returns a one if C\; € TOP(Cypq, M;); otherwise, it returns a zero. This will be

denoted by DC/() in short (DC stands for Delineation Constraint), unless otherwise required.

Definition 1 (Proper delineation) : For a given BBO problem, a relation r;, a class com-
parison statistic T, and a memory size, M;, if DC(r;, T, M;) = 1, we say that r; properly

delineates the search space.

Let us consider our 4-bit problem again. Consider the relation f###. As shown in Table
2.5, when the class average is used to compare the classes 1### and 0##+#, the class 0###
ranks higher than 1###. When M; = 1, TOP(Cj},1) does not contain the class 1##4#,
which actually contains the desired solution. Therefore, we say that the relation f### does
not properly delineate the search space with respect to the class average statistic. On the
other hand, relations ### f and fff# do satisfy this requirement using this statistic. This

delineation requirement plays an important role in SEARCH processes. It essentially qualifies or
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disqualifies a relation for a particular search problem. If a relation does not properly delineate
the search space, there is very little chance that the class with the best solution will be detected.
Therefore, for a given class comparison statistic, whether or not a relation is appropriate can
be directly quantified based on this characteristic function. However, in reality the algorithm
does not know this constraint. The algorithm has to decide whether or not a relation properly
delineates the search space from the limited number of samples taken from the search space.
Therefore, determining whether or not a relation properly delineates is again essentially a
decision-making problem.

Given a finite set of samples from the search space, a class comparison statistic, 7, the
memory size M;, and a relation r;, the goal is to determine whether a relation classifies the
search space in such a way that C,; is in TOP(Ci[],Mi). Since the problem is now reduced
to a decision-making problem instead of the previous binary characteristic function, we can
approach it using the same strategy that we took for selecting better classes. In other words,
we can start comparing relations, estimate how well a relation would satisfy the delineation
requirement compared to another relation, and choose the better relations. This problem is
similar to the class selection problem; the only difference is that now we are trying to choose
better relations instead of better classes. The first question is: How do we compare two relations?
While comparing two classes, we needed a class comparison statistic, 7. The same thing can be
done for relations. Let us denote a relation comparison statistic by 7,.. This statistic is used to
compute an ordering among the relations. Denote this ordering relation by <z.. The ordering
among the relations in ¥, may not remain the same when relations are compared based on a
limited number of samples. In other words, if r; <7, r;, then it is not necessarily true that
7; <7, 7;; I denote a relation 7; when compared based on limited sampling by 7;. Figure 2.6
shows two orderings of the relation space, one depicting the actual ranking and the other based
on sampling information.

I shall assume that there are at least ||.9,| relations in V¥,, needed to solve the problem,
that satisfy the delineation constraint. If this is not true, the chosen set of all relations V.
is not appropriate and a new set should be chosen. Before selecting a particular relation, the
ordering among the relations is computed and one among the top ||.9,] relations is chosen. This

process of relation selection involves decision making in absence of complete knowledge and
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Figure 2.6: Ordering of relations. The left ordering shows the actual ordering and the right
one corresponds to the estimated one.

it is therefore susceptible to decision errors. The following subsection describes the resolution

process.

2.3.2.4 Resolution of classes

Resolution plays an important role in SEARCH. Resolution takes advantage of possible deline-
ability of relations. Classification of the search space defined by a relation is moderated by the
resolution process. If possible, resolution eliminates classes that are not necessary to consider
by using the information gathered by previous evaluations of some other relations. Let 7; be a
relation that properly delineates the search space with memory size M;. Let r; be the relation
currently being evaluated, and r; can be logically expressed as r; A ry, where 7, is a relation.
Resolution of C; with respect to r; eliminates those classes of (; that need not be considered

using our knowledge about 7;. This resolved set of classes in (; can be formally defined as

U U Cui Ny

b=Ny,..N;j—M; a=1,...N;

where the index b varies over the all M; top ranked classes of relation r; and index a denotes
the different IV; classes in (. C[b]J is the rank b member of the ordered collection of classes
in C; and C,; is the a member of the unordered collection of classes C;. Let us illustrate
the concept using our four bit problem. Consider relations fff# and ##ff. Assume that

we already evaluated fff# and that it is believed to delineate the search space properly with
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M; = 1. The top ranked class is 111# computed based on the sample set, as shown in Table 2.7.
While evaluating relation ## f f, resolution with respect to fff# can be used to prune out
some of the classes in ## ff. Relation ##ff defines four classes: ##11, ##01, ##10, and
##00. According to the above definition, resolution of ## f f with respect to fff# produces
the following classes—##11 and ##10. As we see, resolution eliminates classes ##01 and
##00.

The following sections present an analysis of SEARCH with an objective to quantify the

decision success probabilities in class and relation selection processes.

2.4 Decision Making in SEARCH

The previous sections presented SEARCH from both informal and formal points of view. They
also posed the class and relation selection processes as decision problems in absence of complete
knowledge. In this section I analyze these two sources of decision error and combine them to
develop an expression for the overall success probability.

Two kinds of decision errors may make the selection of better classes erroneous:

1. The relation used to define collection C; is such that for the chosen 7, the subset C\;
is not in TOP(C;y, M;). Therefore, despite how well the sampling is done, the selection
process will always miss the subset containing z*, unless CA'M' is ranked higher by sampling
error. A search algorithm needs to determine whether or not a relation does this from a
finite number of samples. Therefore, this could be a source of error. Let us call this error

the relation selection error.

2. Even when C; is in TOP(Cy(p, M;), sampling error can produce a different partial order
structure for CA'LZ',CA'Q’Z',...CA'NM. As a result CA'M' may not be in TOP(CA'Z»[],MZ'). The
sampling error may result in incorrect ordering of the classes and I call this the class

selection error.

These two dimensions of decision error in BBO determine the success probability. The following
sections analyze the success probabilities associated with each of these dimensions. Finally, they

are combined to develop an expression for the overall success probability.
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2.4.1 Relation selection success

If an algorithm does not properly delineate the search space, it is not likely to select the class
containing the optimal solution. Since, in the absence of knowledge, there is no way to know
whether a relation satisfies this requirement or not a priori, this can only be estimated based
on the sampling information. Relations are ordered based on the measure 7., and ||.9,| top
relations are selected. Since these top ||9;|| relations are just the estimated relations that satisfy
the delineation constraint, there is the possibility of decision error. If r; is actually in the top
|5, relations, then the probability that #; will also be within the top ||.9;|| relations depends on
correct decision making in the comparison with at least ¥, — ||.9,| relations. Denote a relation
which actually does not satisfy the delineation constraint by r;. If the minimum probability
that 7#; <z #; over all possible relations is denoted by, Pr(#; <7, #;)min, the success probability
that #; will be one among the top ||.9,] relations is

Pr(CRS | r;) > Pr(#; <g #)I0A=IS 1L (2.2)

mi

where C'RS stands for correct relation selection. The following subsection considers the decision

making in class selection process.

2.4.2 Class selection success

Let us now consider the class selection problem. The probability that the best solution is in any
of the selected subsets will be denoted by Pr(CCS|r;). CCS stands for correct class selection
and conditional to r;, reflects its association with relation r;. Let PT(CA'N' <r CA'M) denote the
success probability given that C;; <7 C;, and let PT(CA'N' <r CA'M)WH be the minimum value
of PT(CA'N' <r CA'M) over every CA'N' which has a depth greater than that of CA'M' and there is a
link connecting it to CA'M'.

Now noting that M; top classes are selected,

PT(CCS | 7‘2') > PT(CA'N' <7 CA'*’Z')N"_M"

min

This gives the success probability for a particular relation r;.
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2.4.3 Overall success

The overall success probability for all the considered relations in 5, then becomes

Pr(CS|Vri€ S,)= [ Pr(CRS|r)Pr(CCS|r). (2.3)
VTiGSr

This equation captures the general idea that will be used in the following sections. As we see,

at the top level, the success of a blackbox search algorithm depends on
1. the success probability in finding relations that properly delineate the search space and
2. the success probability in detecting the class which actually contains the desired solution.
At a lower level, the overall success depends on
1. the class comparison statistic, <7;
2. the relation comparison statistic, <7, which clearly depends on <7 and memory size M;;

3. the way samples are generated by perturbation operator, P;, which may vary with . A
perturbation operator generates new samples during the search. Note that the samples

can either be generated randomly or by using some adaptive strategy;

4. the cardinality of C;, that is, N; and the number of top ranked classes selected for future

consideration, M;.

The following sections specialize the observations of this framework to a specific class com-
parison statistic and representation. First, I consider an ordinal class and relation comparison

statistic.

2.5 Ordinal Class and Relation Selection

Constructing a total order and selection of some M; top subsets from that order have been
studied using both parametric and non-parametric approaches (Gibbons, Sobel, & Olkin, 1977).
If we are willing to make assumptions about the individual distributions of the members of

C';, nice statistics can be formulated to solve this selection problem. However, in the following
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discussion, I adopt a non-parametric, ordinal approach (David, 1981) that allows a distribution-
free analysis of the relation and class comparison process. The purpose of this section is to derive
bounds on the success probability and sample complexity for a quite general ordinal relation
and class comparison statistics.

Section 2.5.1 considers an ordinal class comparison statistic and the SEARCH framework is
specialized for this statistic. Section 2.5.2 further specializes SEARCH for an ordinal relation
comparison statistic. Section 2.5.3 combines the decision making for both better classes and
relations; it also bounds the overall success probability. Finally, Section 2.5.4 derives the overall

sample complexity and discusses its properties.

2.5.1 Ordinal class selection

As I argued in the previous section, BBO can be viewed as a combined process of search for
better relations and better classes defined by each of these relations. Let us first consider the
class comparison process from an ordinal perspective. In order statistics any two classes will be
compared based on their a quantile of the cumulative distribution function (cdf). A quantile
of order a can be defined as the number @, such that F(®,) = a, where F/(®) is the cdf of ®.
This definition of quantile is not fully satisfactory when the cdf is discrete and the a quantile
may not be unique. In such cases, however, we can define it as any convex combination of
points in the closure of the set {® : F'(®) = a}. To convey the main idea without unnecessary
cluttering of symbols, let us assume that the a quantile is unique. We should note that such
quantile-based class comparison will always produce a total order on the collection ).
Consider the comparison between two classes C;; and C} ;. Assume that we take n samples
from each of these classes. I shall denote n samples from the class C;; by CA'LN', 627]'72'7 .. .CA'n7j7i;
the corresponding objective function values by ®q ;;, ®2;;,...®, ;;. These n samples can be

totally ordered on the basis of their objective function values as follows:

Chyji <o é[?],j,i <o - - <o Oy

where, CA'M’]"Z» <o CA'W]W' if (i)[w],j,z’ < (i)[ﬁ],j,i' (i)[k],j,i denotes the k-th order statistic. The sample
estimate of the o quantile for the class j is denoted by y, ;. Define an integer 7 = a(n + 1);

then, y,;i = <i>[7] If a(n + 1) is not an integer, we can set 7 equal to the largest integer

7]72‘
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Figure 2.7: Fitness distribution function of two classes C[;1; and Cy ;-

(D[T] Al (D[T] L Ki

contained in a(n + 1) and compute y, ;; as follows:
Yo = [ 1= aln+ DI85+ [aln + 1) = 7y

This basically interpolates between two adjacent order statistics to approximate the point where
the cdf is equal to a. Again, to keep things simpler, I assume that a(n + 1) is an integer.
Figure 2.7 shows the cumulative distribution function F” and F of two arbitrary subsets C;;
and C} ;, respectively. When these two classes are compared on the basis of the a quantile, then
we say O <o Chyi, since @55 < P p45 Ppr,ji and @pp 5, are the solutions of F/(®;;) = a

and F(®y;) = o, respectively. Let us define
d=F(®[ 1) — F(P[,5,0)-

The variable d defines the zone of indifference, which is basically the difference in the percentile

value of @, and that of @[, ;; computed from the same cdf F. Figure 2.7 clearly explains

7j7i
this definition.
It can be easily shown that for 7-th order statistics of set C;; (David, 1981), ®(,

7]727

!

Pr(®py ;<) =30 () (L= F(e ). (2.4)
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The probability of correct selection among these two classes can be written as

Pr(i)[ﬂ'],j,i < q)[ﬂ'],k,i) = ZPT(é[T]Jﬁ = Z)PT(¢[7]7k7i > Z)
Vz

> Pr(®p < S0 Pr(®p e > 00 (2.5)
Now we can write
Pr(®pypi>2) = 1= Pr(®pyp, < 2)
Y @) R
> - (FG (2.
Therefore,
Pr(®pyp: > i) > 1= (D)(a—d). (2.7)
Similarly, we can write that
Pr(®py 0 < ) > (Fa’ (2.8)

Noting that (7) > (£)7, and using inequalities 2.5, 2.7, and 2.8, we can write

v

i i AN n T
Pr(@p S bppn) 2 (2) a7 (1= (@)@ —d))
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(an)(a—d)*")
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It can be shown (Cormen, Leiserson, & Rivest, 1990)(pp. 102) that, for 0 < A <1,

An ’ (210)
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where H(A)is the binary entropy function, H(A) = —Alogy A — (1 — A)logy(1 — A). H(0) =
H(1) =0 and H(XA) takes the maximum value for A = 0.5. Using 2.10 and 2.9 we write

Pr(®pi <o i) = 1=2"(a - a)m, (2.11)

7j7i -
If we denote the cdf of the class containing the optimal solution x*, then define

1

d” = min{F(®[.:) — F(P[,;0) IV},
the probability that the class CA'M' will be within the top M; classes is
Pr(CCS | ) > [1 =270 (o — g")omNim M (2.12)

Given relation r; that properly delineates the search space, Equation 2.12 can be used to
compute the probability that C,; will be within the top M; classes. Before we proceed toward
computing the overall correct selection probability, we need to consider the search in the relation

space.

2.5.2 Ordinal relation selection

A relation is appropriate if it properly delineates the search space. Determining whether or not
a relation satisfies this constraint with absolute certainty is not possible unless we completely
enumerate the search space. Therefore, in reality, the characteristic function DC() is replaced
by an estimator that measures how likely a relation satisfies delineation constraint. Let us
define a measure 5 : ¥, x 2¢ x 2¥ — R. 2% denotes the collection of classes and 2% denotes
the sample set. For a given relation r;, the corresponding set of classes C;, and a sample set
S, this measure n(r;, C;, S) returns a real value that corresponds to the chances of r; to satisfy
the delineation constraint (i.e. C\;is a member of TOP(Cjypy, M;)). In short, n(r;, C;, S) will
be written as 7;. This measure will be used to order the equivalence relations r;,7; € ¥,. Let
us again adopt an ordinal approach to compare different relations, just as we did for selection
of better classes. For any two relations r; and r;, the corresponding 7; and 7; can be treated
as random variables. In the class space the random variable was defined to be the objective

function value of the samples. Unlike that, here in the relation space the random variable is
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Figure 2.8: Cumulative distribution function of two relations r; and r;.

the measure 5, which is defined over a collection of classes and a sample set for a given relation
relation. Since, for a given r;, the computation of 7; depends on a tuple from (2¢ x 2%), a
collection of n, such tuples will generate a distribution of different values of ;. Figure 2.8
shows the cdf of two competing relations r; and r;. Let us say that r; satisfies the delineation
constraint and r; does not.

If we compare these two relations on the basis of some 7,-th order statistic, the success
probability can is computed in exactly the same way that we just did for class comparisons. If

o, be the corresponding percentile,
Pr(fpj <ar 1) 2 1 =200 (= dy o (2.13)
where

d, = min{ F(p,,1;) — Fnpry.0|V5, Vi)

where F' is the cdf of the relation comparison statistic of relation ;. d; is essentially similar to
d”, except that this is for relation comparison instead of the previous case of class comparison.
In the most general case, a relation needs to be chosen out of the all possible relations in V..
However, in reality, it may be true that only a subset of W, is chosen at a time. In the following
analyses [ consider the general case, in which all relations in ¥, are under consideration. Let us

assume that among these ¥, relations, the set ¥, C W, contains all the relations that properly
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delineate the search space. If relation r; € ¥,, then the probability that r; will be correctly
identified is

Pr(CRS | r; € U,) > [1 =20 H @), — g yorm]1=19ll, (2.14)

This is the success probability in choosing one good relation. If we need 5, C ¥, relations to

solve a problem, we can bound the overall success probability in the relation space as follows:

[1— 2 Hen) (o, — g yerne | SHA-19alD) > o

onrH(en) (g — gryerne < 1 — gL/ USHIATAI=1T,1)
log(1 — g/ (IS IIEAI=1%olDy

r

H(a,)log?2 4 a, log(a, — d)
log(1 — q}/(l|5r||(||\1’r||—||‘1’g||))

2.1
a, log(a, — d¥) ’ (2.15)

where d* is a constant such that d, > d* and ¢, is the desired bound on the relation selection
success probability. Now, noting that log(1 — a) < —a and that both the numerator and

denominator of inequality 2.15 are negative numbers, we can write that

*

d
a,log(a, —dy) = a, (log (1 — —T) + log aT)
o

r

)
o, | —— 4+ log a,

Q.

IN

= —d: 4 a,loga,. (2.16)

For a given class comparison statistic a, is constant, and therefore, o log a,. is also a constant.
Since we are primarily interested in the order of growth of n,, let us neglect this constant term

of Inequality 2.16. Now the Inequality 2.15 can be written as,

(1— %}/(IISrII(II\I’rII—II‘I’gII))

log
> v

oy

(2.17)

Inequality 2.17 can be further rearranged. Define delineation-ratio,

Number of relations in W, that properly delineates

Q =

Total number of relations in ¥,
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= (2.18)

When this ratio is high, searching for appropriate relations is easier, since most of the members
of the relation space are appropriate for properly classifying the search space. Using definition

2.18 and Ineqality 2.17 we can write

(1- q}/(IISrII ||‘1’r||(1—Q)))

log
> =

(2.19)

oy

This bounds the overall computational complexity in the relation space. Inequality 2.19 can be

further simplified using the approximation log(1l — z) = —z for << 1,

q}/(llsrll 19+(](1-%2))

d*

r

n, > (2.20)

This clearly shows that n, increases as ¢, increases and that n, increases when d} is reduced.
Since ¢, < 1, n, decreases as €} increases. As the number of relations needed to sove the
problem, ||.S,]|, increases, n, also increases. The collection of relations ¥, defines the complete
search space for relations. The larger the number of relations in ¥, the more computation is
required for searching for appropriate relations.

The decision making in the relation and class spaces are combined in the following section.

2.5.3 Overall selection success

Let us now combine the search for better relation and better classes together and compute the

overall success probability. Define
d' = min{F(®[,.) = F(®1,,) V3. Vi),

d’ is basically the minimum possible value of d over all classes (index j) which are compared
with class containing the optimal solution and all relations (index i) in 5,. Now let us consider
the overall class selection success probability given by equation 2.3. Note that the relation
<4 imposes a total order onto C;. Define, Ny .x as the maximum possible value of N; over
all relations in 5.; Let M., and ¢, be the minimum value of memory size M; and bound on

success probability in choosing a relation respectively over all the relations in §,. In formal
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notation,

Nmax = max{N;|Vr; € 5, }

Mpim = min{Mi|V7‘i € ST}

If d* is a constant such that d' > d*, just like the previously defined d}, then the overall success

probability can be bounded as follows:

[(1 _ QHH(OZ)(O[ _ d*)Oln)(Nmax_Mmin)]”ST”qT Z q

I S
2nH @) (o — g*)om <1 — (i) Mo TN max = Mrain)
qr
I S
log(1 — (qi) TS Nmax =i |

H(a)log2 + alog(a — d¥)

1
[ g Y ISrll(Nmax—Mpin)
n > gl (q) ) (2.21)
alog(a — d*) '

n >

The denominator of Inequality 2.21 can be simplified in a manner similar to inequality 2.16.
The simplified expression is,
( )—n (¥ )
1Og(1_ q Sr|[( Nmax —Mpin )
q

. . 2.22
0> — (2.22)

This inequality bounds the number of samples needed from each class to achieve an overall
success probability of ¢ in the combined relation and class spaces; g, gives the given level of
success probability in choosing ||5;|| relations correctly. The cost of increasing the bound ¢,

can be realized using inequality 2.19.

2.5.4 Sample complexity

The previous subsection derived closed-form bounds on the overall success probability. This

can be directly used to bound the overall sample complexity,

qr

e

1
Nonas| 1| g1 — () T
< . (2.23)
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This inequality gives the overall sample complexity when the probability to find the globally

optimal solution is at least ¢. This expression can be further simplified using reasonable ap-
1

proximations to clearly explain its physical significance. Since (;LT) I8N max=Mrain) < 1 and

log(1 — ) = —z for # << 1, we can approximate inequality 2.23 as follows:

Nmax S’/’ T m;x— min
§¢ < NmaxllSel] (i) e " (2.24)

A Gr

Inequality 2.24 presents a clear picture of the contributions of different parameters of the
SEARCH framework into the sample complexity. Recall that ¢ is the bound on the overall
success probability in the relation and class spaces combined. Clearly, sample complexity SC
grows polynomially with g. On the other hand, ¢, is the minimum bound in the success proba-
bility in choosing all ||5,|| relations correctly. The cost of demanding higher success probability
in the relation space shows up in inequality 2.19. However, as we increase our success proba-
bility in the relation space, the overall success probability in the combined relation and class
spaces increases. The sample complexity should therefore decrease as success probability in
the relation space increases. Inequality 2.24 clearly shows that SC decrease with increase in
g-. Note that the ratio (%)m approaches 1 in the limit as ||.9:||[( Nmax — Mmin)
approaches infinity. Therefore, SC grows at most linearly with the maximum index value Ny .«
and the cardinality of the set 5,. Recall that d* defines the desired region of indifference;
in other words, it defines a region in terms of percentile within which any solution will be
acceptable. The sample complexity decreases as the d* increases.

This bound on sample complexity establishes an insight introduced earlier in this chapter.
In the beginning of Section 2.2, I argued that BBO can perform no better than random enu-
meration unless we try to exploit the relations among the members of the search space. Now
that we have a closed-form bound on sample complexity, let us investigate the case when no
relations are assumed among the members. Saying no relations are assumed essentially means
that there exists only one relation in V¥, that basically divides the complete search space into a
set of singleton classes. For our 4-bit problem representation, this could be the relation ffff.
This relation divides the search space into 16 singleton classes, which is essentially the com-
plete search space. From the definition of global optima, we know that such a relation always

properly delineates the search space. Therefore, S, = 1 and ¢, = 1. The index of this relation
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is same as the caridinality of the search space. So, Nyax = ||X]|, where ||X'|| denotes the size of

the search space X'. Substituting these in Inequality 2.24 we get

1

= (2.25)

This inequality clearly tells us that the overall sample complexity becomes the size of the search
space when we completely neglect all relations that put at least two members together in a class.
The only advantage that we get comes from our relaxation in the desired solution quality (d*)
and the overall success probability (¢). This confirms that although SEARCH provides one
particular perspective of BBO, the importance on relations is fundamental, and it should be
emphasized in all possible models of BBO that aspire to guide designing BBO algorithms that
perform better than random enumerative search. No BBO algorithm can transcend the limit
of random enumerative search without inducing relations among the members.

This sets the background for the coming section. This confirms that induction is an im-
portant and essential aspect of BBO. The Probably Approximately Correct (PAC) learning
framework (Natarajan, 1991; Valiant, 1984) offers a perspective of induction. It will be inter-
esting to note the correspondences between SEARCH and PAC learning. The following section

presents a comparative discussion between them.

2.6 SEARCH and PAC Learning

Inducing relations is an essential aspect of SEARCH. The Probably Approximately Correct
(PAC) learning theory (Haussler, 1989; Natarajan, 1991; Valiant, 1984) provides a framework
to quantify the computation in inductive learning in a distribution-free, probabilistic, and
approximate sense. SEARCH and PAC share some common characteristics, but they also
differ in many fundamental aspects. The objective of this section is to point out the main
correspondences between these two frameworks.

First, I present a brief review of some of the elementary concepts of PAC framework. Next,
I discuss the similarities and the dissimilarities between SEARCH and PAC.

The PAC framework presents a computational theoretic perspective of inductive learning.

This framework views inductive learning as a probabilistic process of learning hypothesis which
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sometimes may give incorrect results. Although this framework has now led to a separate field
with a large volume of literature, no effort will be made to cover all the results. A review of the
recent progress in this area can be found elsewhere (Natarajan, 1991). In this section, I shall
restrict myself to cover some of the elementary results reported in the PAC literature which

will suffice our main purpose—comparing PAC with SEARCH.

Theorem 1 (Blumer, Ehrenfeucht, Haussler, and Warmuth (1987)) : Let H be a set
of hypotheses over a universe U and let S be a set of m training examples drawn independently
according to P(u), €,6 > 0. Then if e H is consistent with all training ezamples in S and

m> <log + o HHH) , (2.26)

then the probability that F has error greater than € is less than 6.

This inequality bounds the sample complexity in PAC. For a given hypothesis space H,
acceptable error level €, and failure probability é, this inequality tells us the minimum number
of samples needed to learn a hypothesis with error less than e.

As we noted earlier, the sampling process in blackbox optimization can be viewed as an
inductive process. Searching for an appropriate relation can be viewed as an inductive search
for a correct hypothesis. However, solving a BBO often requires many such inductive searches,
since finding the optimal solution using a single relation is very unlikely for non-trivial problems.
Therefore, the PAC framework can be philosophically viewed as a computational process em-
bedded within the SEARCH framework. This argument will be further clear from the following
discussion.

When we compare Inequalities 2.26 and 2.23, several observations can be made. First of
all, note that both of these frameworks are probabilistic and approximate in nature. However,
there are some fundamental differences between how these relaxations are introduced. The ¢
failure probability of PAC gives the overall bound on the chance to succeed. On the other
hand, the success probability in SEARCH in introduced at the level of individual relation
and class evaluation processes. Although both ¢ and ¢, are defined for bounding the overall
success probabilities, the fundamental relaxations originate from the relaxed sampling during

the relation evaluation process and the class comparison process.
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The € parameter of PAC presents a cardinal relaxation of the solution quality. In other
words this relaxation parameter depends on the absolute values of the accuracy of the learned
hypothesis. On the other hand, in the SEARCH framework, the relaxation is ordinal in nature,
meaning the quality of the solution is determined by its ranking among all the members of the
search space.

Both SEARCH and PAC adopt a distribution-free approach for computing the sample com-
plexity. Another interesting similarity between these two can be observed by noting the role of
Vapnik-Chervonenkis (VC) dimension in PAC framework. It has been shown elsewhere (Blumer,
Haussler, & Warmuth, 1990) that a space of hypotheses H is PAC learnable if and only if it
has a finite VC dimension. VC dimension is used as a measure to quantify the learnability
of a hypothesis space. The SEARCH framework also has a counterpart of this measure—the
delineation constraint. SEARCH requires a set of relations that can be defined over the search
space, which must satisfy this constraint for a given class comparison statistic and memory
size. If the number of relations satisfying this delineation requirement is too small compared
to what is needed to the solve the BBO, success is very unlikely. When representation is used
as the major source of relation, this requirement provides one way to quantify what it means
to be an appropriate representation.

The following two sections consider simulated annealing—a BBO algorithm and evolution—

a natural search process and demonstrate that their underlying computation can be captured

using SEARCH.

2.7 SEARCH And Simulated Annealing

Like many other algorithms, simulated annealing (SA) algorithm does not explicitly consider
the relations. Therefore, the projection of SA into the SEARCH framework depends on our
perspective toward SA as well. Since relations can be defined in many ways, when the relation
space is not explicitly specified, identifying it leaves room for speculation. The original version
of SA does not emphasize representation. Moreover, the random neighborhood generation
operator does not pay enough consideration to the relations and classes defined by the chosen

representation.
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/* Initialization */

T = High temperature; // Initialize the temperature to a high value
Initialize(x); // Randomly initialize the state

Evaluate(x); // Evaluate the objective function value

{

Repeat
{
Generate(x’); // Generate new state
Evaluate(x’); // Evaluate the objective function value
If ( Metropolis criterion(x, x’) TRUE )
x = x> // Change state to x’
}
Until (Equilibrium is reached)
Decrease(T); // Decrease the temperature
}

Until ( T < T,,;, Or (termination criterion TRUE) )

Figure 2.9: A pseudo-code for simulated annealing.

In this section, we therefore choose to view SA as a processor of relations and classes defined
by the neighborhood generation operator. The following part of this section briefly discusses

different counterparts of SEARCH in the SA.

¢ Relation space: A state z; and the neighborhood generation operator (P) are the two
ingredients of the relations processed by the SA. For a given state z;, the neighborhood
generation operator defines a set of states that can be reached in certain number of steps
(s) from z;. This defines a relation among a certain subset of the search space. Therefore,

a relation r; in SA can be specified by the triple (z;, P, s).

¢ Class space: The relation (z;,P,s) divides the search space into two classes—(1) the
set of states that can be reached from x by applying P for s number of times and (2) the
rest of the search space. This defines the class space for a given relation. Let us denote

the first class by C;; and the second by C5 ;.

¢ Sample space: The SA processes only one sample at a time. The sample represents the

state of the algorithm.
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Starting state of SA Final State

Figure 2.10: The SEARCH perspective of SA.

Searching for the optimal solution in SEARCH also requires different comparison statistics
and resolution for combining the features of different classes from different relations. The

following discussion points out their counterpart in SA.

¢ Relation and class comparison statistics: Since SA does not explicitly defines the
relations and classes, only one statistic, defined by the Metropolis criterion, is used for

serving both purposes. This comparison statistic varies as the temperature changes.

¢ Resolution: Consider the two relations (z1,P,s) and (22,P,s), where z; and xy are
two arbitrary states from the search space. Let us denote the set of states that can be
reached from z; and z, by applying P for s times by €1 and (' o, respectively. Let z;
be the current state of SA and 2,41 be the next state. Now if 21 and x, are such that
the z; € Cy1 and 2,41 € (2, then the next state, z;41, is basically a sample from the
intersection set of the two classes (1 ; and ('j 5. Generating samples from the intersection

set of classes is essentially what resolution does.

The above discussion presents a perspective of SA in the light of SEARCH. Figure 2.10
pictorially depicts this perspective of SA. This figure schematically shows the trajectory of SA
within the overlapping classes. As I mentioned earlier, this section presents only one possible
way to define classes and relations in SA. Since SA does not explicitly define them, different
possibilities may be speculated.

The following section presents the main arguments of an effort to develop an alternate

perspective of natural evolution using the SEARCH framework (Kargupta, 1995a).
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2.8 SEARCH And Natural Evolution

The SEARCH framework, introduced in this thesis, is developed as a result of an effort to
understand the fundamental computation in blackbox optimization. In this section, I take a
step in a different direction. I argue that the lessons of SEARCH are also useful in understanding
the search in natural evolution. An alternate model of evolutionary computation is proposed
by Kargupta (1995a) that establishes the computational role of gene expression in natural
evolution. Here, I make an effort to summarize the main arguments of that effort to link
SEARCH and natural evolution.

Section 2.8.1 briefly discusses the flow of information in natural evolution. Section 2.8.2
points out the main problem of the existing models of evolutionary computation—Ilack of em-
phasis on gene expression. Finally, Section 2.8.3 draws the correspondence between SEARCH

and evolution and presents an alternate perspective.

2.8.1 Information flow in evolution

Information flow in evolution is primarily divided into two kinds:

¢ extra-cellular flow: storage, exploration, and transmission of genetic information from

generation to generation;
¢ intra-cellular flow: expression of genetic information within the body of an organism.

Each of these will be discussed in the following two paragraphs.

The extra-cellular flow involves replication, mutation, recombination, and transmission of
DNA (deoxyribonucleic acid) from parents to offspring. A DNA molecule consists of two long
complementary chains held together by base pairs. DNA consists of four kinds of bases joined to
a sugar-phosphate backbone. The four bases in DNA are adenine (A), guanine (G), thymine (T)
and cytosine (C). Chromosomes are made of DNA double helices. For more detailed description,
the reader should refer to Alberts, Bray, Lewis, Raff, Roberts, and Watson (1994, Stryer (1988).
Fukaryotes (most of the developed organisms) have two chromosomes in their cell nucleus, and
thus called diploid organisms. On the other hand, in prokaryotes, such as single-celled bacteria,
only one chromosome is present. These are called haploid organisms. The DNA sequence is

changed by mutation. Crossing over and subsequent recombination result in exchange of base
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Figure 2.11: Intra-cellular flow of genetic information.

pairs between the parent DNA sequences. These processes result in generation of new DNA
sequences. DNA is then transmitted from the parents to the offspring. The DNA is responsible
for defining the phenotype of organism and thereby controls the suitability of the organism in
the environment. This suitability determines the selective pressure on the organism. Fitter
organisms survive, and the rest do not. However, the computation of the phenotype from
the DNA—gene expression—is an interesting process in itself. The following paragraph briefly
describes the main steps of gene expression, that define the intra-cellular flow of evolutionary
information.

Expression of genetic information coded in DNA into the proteins is called the gene expres-
ston. Expression of genetic information takes place through several complicated steps. However,

the major distinct phases are identified as
e transcription: formation of mRNA (ribonucleic acid) from DNA
¢ translation: formation of protein from mRNA

Figure 2.11 shows the different steps of gene expression. Each of them is briefly described in
the following.

Transcription synthesizes messenger RNA (mRNA) from part of the DNA. RNA (ribonucleic
acid) consists of four types of bases joined to a ribose-sugar-phosphodiester backbone. The four
bases are adenine (A), uracil (U), guanine (G), and cytosine (C). Transcription is basically
constructing a sequence of bases from another sequence of bases—the DNA. Transcription is
initiated by some particular sequences of bases in DNA. They are known as promoter regions.

For example, in many prokaryotes, the Pribnow box sequence TATAAT is a common promoter

49

www.manaraa.com



region. Transcription continues until it reaches some particular kind of sequences of bases,
known as a terminator region. RNA polymerase transcribes the portion of DNA between
the promoter and terminator regions. Regulatory proteins of a cell can directly control the

transcription of DNA sequences. There are two kinds of regulatory proteins:
e gene activator protein, which enhances transcription of a gene, wherever it binds.
e gene repressor protein, which inhibits transcription of a gene.

These proteins usually bind to specific sequences of DNA and determine whether or not the
corresponding gene will be transcribed.

Messenger RNA acts as the template for protein synthesis. Proteins are sequence of amino
acids, joined by peptide bonds. Messenger RN A is transported to the cell cytoplasm for produc-
ing protein in the ribosome. There exists a unique set of rules that define the correspondence
between nucleotide triplets (known as codons) and the amino acids in proteins. This is known
as the genetic code. Each codon, comprised of three adjacent nucleotides in a DNA chain,
produces a unique amino acid.

Most of the existing models of evolutionary computation do not provide any understanding
about the computational role of the intracellular flow of genetic information. The following

section points this out.

2.8.2 Problems of the existing views of evolution

Unfortunately, many of the existing computational models of evolution address only the ex-
tracellular flow of genetic information. Simple genetic algorithms (De Jong, 1975; Goldberg,
1989; Holland, 1975), evolutionary strategie (Rechenberg, 1973), and evolutionary algorithms
(Fogel, Owens, & Walsh, 1966) are some examples. These existing perspectives of evolutionary
computation do not assign any computational role to the nonlinear mechanism for transforming
the information in DNA into proteins. The same DNA is used for different kinds of proteins in
different cells of living beings. The development of different expression control mechanisms and
their evolutionary objectives are hardly addressed in these models. They primarily emphasize
the extra-cellular flow. The main difference among these models seems to be the emphasis on

crossover compared to mutation or vice versa.
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Although gene expression is not emphasized very much in most of the popular models
of evolutionary computation, several researchers realized its importance. The importance of
the computational role of gene expression was first realized by Holland. He described (Holland,
1975) the dominance operator as a possible way to model the effect of gene expression in diploid
chromosomes. He also noted the importance of the process of protein synthesis from DNA in
the computational model of evolution. Despite the fact that traditionally dominance maps
are explained from the Mendelian perspective, Holland made an interesting leap by connecting
it to the synthesis of protein by gene signals, which today is universally recognized as gene
expression. He realized the relation between the dominance operator with the “operon” model
of the functioning of the chromosome (Jacob & Monod, 1961) in evolution and pointed out the
possible computational role of gene signaling in evolution (Holland, 1975).

Several other efforts have been made to model some aspects of gene expression. Diploidy
and dominance have also been used elsewhere (Bagley, 1967; Brindle, 1981; Hollstien, 1971;
Rosenberg, 1967; Smith, 1988). Most of them took their inspiration from the Mendelian view
of genetics. The underspecification and overspecification decoding operator of messy GA has
been viewed as a mechanism similar to gene signaling in Goldberg, Korb, and Deb (1989).
Dasgupta and McGregor (1992) proposed the so-called structured genetic algorithm, which
uses a structured hierarchical representation in which genes are collectively switched on and
off. This implementation also gathered its primary motivation from gene expression.

However, none of these approaches really addressed the major steps in gene expression pri-
marily identified by the biologists during the last 30 years, and instead quantify their purpose in
terms the basic computational principles. Many questions involving the computational benefit
from the collective switching of genes or the regulatory mechanisms controlling the transcrip-
tion of DNA to RNA remain unanswered. In the following section I present a brief account
of a recent effort (Kargupta, 1995a) to fill in this lacuna using the lessons from the SEARCH
framework. The central argument that evolves out of the following discussion is that the intra-
cellular expression of genetic information plays an important role in evolutionary computation

that can be quantified from the SEARCH perspective.
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2.8.3 Evolutionary computation: The SEARCH perspective

Despite the fact that nowhere during the development of SEARCH did we consider any idea
from biology, it will be interesting to see how it views the evolutionary search in nature. The
following part of this section briefly discusses a possible correspondence between SEARCH and

natural evolution.

¢ Sample space: DNA constitute the sample space. Crossover and mutation generate new
samples of DNA. A population of organisms defines the sample space for the evolutionary

search.

¢ Class space: Base sequences of mRNA transcribed in a cell correspond to only a part of
the complete DNA. The sequences of amino acids in protein in turn correspond to base
sequence in mRNA. The genetic code tells us that there is a unique relationship between
the nucleotide triplets of the DNA and the amino acids in the protein. Therefore, if we
consider the DNA as a representation defined over the evolutionary search space for life
and different forms of life, then the amino acid sequence of a protein corresponds to a class
of different DNA; every DNA in this class must have a certain sequence of nucleotides
that can be transcribed to that particular sequence of amino acids. Since the genetic
code is unique, a particular sequence of amino acids can only be produced by a certain
sequence of nucleotides. In other words, the sequence of amino acids in a protein defines

an equivalence class over the DNA space.

¢ Relation space: Recall that amino acid sequences in protein are translated from the
nucleotide sequences of mRNA. The construction of mRNA is basically controlled by the
transcription process. Since an equivalence relation is an entity that defines the equiva-
lence classes, the transcription regulatory mechanism can be viewed as the relation space
that defines classes in terms of the nucleotide sequences in mRNA and finally in terms
of the amino acid sequences in proteins. Among the different components of this reg-
ulatory mechanism, regulatory proteins, promoter and terminator regions play a major
role. Regulatory proteins exist as a separate entity from the DNA. but the promoter
and terminator regions are defined on the DNA. It appears that there is a distinct rela-

tion space comprised of the different regulatory agents, such as activator and inhibitor
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Table 2.9: Counterparts of different components of SEARCH in natural evolution.

SEARCH Natural evolution
Relation space gene switching mechanism

Class space amino acid sequence in protein
Sample space DNA space

proteins. However, it is quite interesting to note that this space also directly makes use
of information from the sample space—the DNA. Expression of genetic information in
eukaryotic organisms is more interesting than that in prokaryotes. Apart from more so-
phisticated transcriptional control system, Kargupta (1995a) pointed out that the diploid

chromosome can be viewed as a process of relation construction.

These possible relationships between the different spaces of SEARCH and natural evolution

are summarized in Table 2.9.

¢ Relation and class comparison statistics: Classes are defined by amino acid se-
quences in protein. Proteins are directly responsible for almost every functional and
organizational behavior of an organism. Proteins are sometimes called the phenotype of
an organism because of this reason. The efficacy of a protein is evaluated in terms of the
organism’s performance, and natural selection assigns a certain selective measure to this
process. This can be viewed as a process of evaluating classes. On the relation front,
there is already evidence that the settings for the intracellular expression of genetic in-
formation evolves during the course of evolution (Alberts, Bray, Lewis, Raff, Roberts, &
Watson, 1994). Therefore, there must be some selective pressure toward the appropriate
regulatory setting and that can be held responsible for the decision making in the relation

space.

¢ Perturbation operators: Crossover, mutation, and gene deletions appear to be the per-
turbation operators in natural evolution. They change the participating DNA sequence(s)

and thereby generate new samples.

¢ Resolution: Crossover and recombination swap different portions of two DNAs. Al-

though the exact mechanism of crossover is quite involved, the main outcome of the pro-
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cess is exchange of DNA subsequences between the parent chromosomes. The offspring
DNAs are therefore comprised of the features of classes containing the parent DNAs.

Therefore, the offspring are samples from the intersection set of the parent classes.

The following section summarizes the major points discussed in this chapter.

2.9 Summary

This chapter started by noting that a BBO algorithm is not likely to perform better than a
random search unless some relations are exploited among the members of the search space. This
led to the development of the SEARCH framework, which tries to exploit the role of relations
in BBO. SEARCH presents an alternate perspective toward blackbox optimization. It views

blackbox optimization as a composition of the following different processes:
1. classification of the search space;
2. sampling from the search space;
3. searching for appropriate relations that divide the search space in a suitable way;

4. searching for better classes defined by each of these relations, so that the desired solution

is a member of one of these chosen classes;
5. resolution.

Searching along relations and the class spaces has three steps: (1) evaluation, (2) ordering, and
(3) selection. Evaluation detects good relations or classes; ordering constructs a ranking based
on the evaluation; selection picks up the good ones and discards the bad ones.

A relation is defined to be good if it can classify the search space in such a way that the class
containing the globally optimal solution can be detected using the class comparison statistic.
This requirement is called proper delineation of the search space. Determining whether a
relation satisfies this or not requires decision making in absence of complete knowledge. This
is a source of decision error in BBO.

Detecting a good relation in turn requires approximate identification of good and bad classes

defined by the relation. This introduces the other dimension of the SEARCH framework,
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searching for better classes. Even if the relation properly delineates the search space, decision
error can be made during the comparison between two different classes. This is again viewed
as a decision problem.

Success in blackbox optimization is tied with the successes along these two different dimen-
sions. After presenting a general description of search from this perspective, I incorporated
ordinal class and relation comparison statistics into the framework. A closed form bound in
sample complexity is developed for any BBO that can be solved by considering a finite set of
relations defined among the members of the search space. The sample complexity grows linearly
with the cardinality of the set of relations, the maximum index value of these relations, the
desired solution quality (described using order statistics), the desired degree of appropriateness
of the relations, and the overall success probability demanded. This expression for sample com-
plexity established my earlier argument that consideration of relations among the members of
the search space is unavoidable if an algorithm aspires to perform better than random enumer-
ative search. I specifically showed that the sample complexity approachs the size of the search
space when we consider no relations that put at least two ground members into the same class.
In this case, the only reduction in sample complexity comes from the relaxation in the desired
solution quality and the overall success probability. Therefore, emphasizing the role of relations
is fundamental and should be a part of any model of BBO.

This chapter has also noted the correspondences between SEARCH and PAC-learning. In
the PAC learning framework, an algorithm seeks an approximately correct hypothesis in a
probabilistically correct way. Since hypotheses are nothing but relations, there must be some
correspondences between these two frameworks. Although, unlike PAC-learning, the ultimate
objective of SEARCH is to find an optimal solution, not the best relation, SEARCH incor-
porates the search in relation or hypothesis space to surpass the limits of enumerative search.
Different components of the bound on sample complexity in SEARCH are compared with their
counterparts in PAC. Both PAC and SEARCH are probabilistic and approximate procedures.
However, these “probabilistic and approximate” aspects are introduced at two distinctly dif-
ferent levels in SEARCH and PAC. Unlike PAC, SEARCH introduces relaxation at the level
of each relation evaluation. I also noted the delineation constraint in SEARCH as a possible

counterpart of the VC dimension that characterizes the representation in PAC.
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In order to demonstrate the generality of the SEARCH framework, the last part of this
chapter considered two case studies. The first one considered the simulated annealing (SA)
algorithm in the light of SEARCH. A detailed correspondence between the different aspects of
SA with the SEARCH framework is drawn. Next, a brief description of evolutionary compu-
tation is presented from the SEARCH perspective. Following Kargupta (1995a), we note that
SEARCH offers an alternate model of evolutionary computation that emphasizes the role of
intracellular flow of information—the gene expression. Unlike most of the existing models of
evolutionary computation, this perspective identifies the DNA—RNA—Protein synthesis as a
process of explicit construction of equivalence classes and relations.

SEARCH lays the foundation for the materials in the following chapters of this thesis. In
the next chapter, I shall describe the main implications of this framework and how they should

be used for developing a comprehensive approach toward solving BBO problems.
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Chapter 3

Implications of SEARCH

The SEARCH framework developed in the previous chapter shows an alternate way to view
BBO. Different facets of this framework have been addressed from an abstract quantitative
perspective. However, those formalisms lead toward meaningful, physical aspects of BBO. In
this chapter I present the main physical implications of SEARCH. A framework like SEARCH

should contribute to each of the following aspects of problem solving;:
1. How do we define an algorithm in this framework? How can we make them efficient?
2. How can we characterize problems that can be solved efficiently and vice versa?
3. What is the user’s role in solving a BBO?

The primary objective of this chapter is to answer these questions.

I start the discussion by describing what it means to be a BBO algorithm in SEARCH.
This is presented in Section 3.1. This is followed by Sections 3.2 and 3.3, in which two possible
ways to make a BBO algorithm efficient are pointed out. Section 3.2 describes the benefits of a
bottom-up approach of blackbox search, in which low-order relations are considered first. Sec-
tion 3.3 discusses implicit parallelism—evaluating relations in parallel at no additional sample
complexity. Next, in Section 3.4, I introduce the SEARCH perspective of problem difficulty
in BBO. Defining difficult problems sets the background for introducing the class of problems
that can be solved in polynomial sample complexity. Section 3.5 presents the class of order-k
delineable problems that can be solved in polynomial sample complexity in SEARCH. Section

3.6 discusses one important role of the user in solving a BBO—defining the source of relations.
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Section 3.7 discusses some issues regarding the representation-operator interaction. Finally,

Section 3.8 summarizes the main points of this chapter.

3.1 Blackbox Optimization Algorithm in SEARCH

The SEARCH framework decomposed BBO into different components such as the relation
space, class space, and the sample space. Searching in these spaces requires some fundamental
tools, such as some comparison statistics and a perturbation operator for generating samples.

In this section, I list them together and project a complete picture of what it means to be a

BBO algorithm in SEARCH.

1. SEARCH views the solution domain through relations, classes, and samples. An algorithm
in SEARCH should be provided with a set of relations ¥,. Representation in genetic algo-
rithms (GAs), perturbation operators of simulated annealing (SA), and the neighborhood

heuristic in k-opt algorithm are some examples of different sources of relations.

2. SEARCH also needs explicit storage for processing relations, classes, and samples. The
maximum possible values of M, and M; determine the size of the memory for storing rela-
tions and classes respectively. In genetic algorithm the population serves as the memory
for all three of these spaces. In SA the evaluation of different classes defined using the
perturbation operators is distributed over time and only one sample is taken at a time.

The state of the SA algorithm serves as the memory for the sample space.

3. Two statistic measures for comparing classes and relations are required. A Selection
operator is used for comparing classes in the simple GA. The Simple GA does not really
search for better relations. On the other hand, in simulated annealing, the Metropolis
criterion is used for comparing two states; this can be viewed as a class comparison

statistic.

4. A perturbation operator, P is required for generating samples. In GA, crossover and
mutation generate new samples. SA make use of a neighborhood generator for sample

generation.

5. Accepting criterion of success probability, ¢, and ¢, are necessary. Almost every practical

application of GA and SA either implicitly or explicitly makes use of an acceptance
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criterion for success. Neither simple GA nor SA actually searches for better relations.

Neither of them has any explicit criterion like ¢, .

6. Required precision in solution quality, d* is required. Again, in practice, both GA and
SA somehow introduce the factor controlling the desired solution quality. Goldberg, Deb,
and Clark (1993, Holland (1975) quantified the effect of desired solution quality on the

success probability using a parametric approach.

In many algorithms, some of these parameters are not explicitly specified. For example, in
random enumerative search, no importance on relations is given. However, even this kind of
search can be shown as a special case of SEARCH. As I explained earlier in Chapter 2 during
the discussion on sample complexity, the random enumerative search is essentially a search with
one and only one relation in consideration that divides the search space into singleton classes.
For example, in GA, no explicit specification of class comparison statistic is required. However,
this is taken care of by the chosen selection operator. One of the main objectives of this whole
effort is to develop a more systematic approach toward the design and use of BBO algorithms
by explicitly identifying different components of a BBO algorithm.

SEARCH provides a common ground for developing new blackbox algorithms in the future.
Regardless of the motivation and background, any blackbox optimization algorithm should
clearly define each of the above listed components. A BBO algorithm should define how it pro-
cesses relations, classes, and samples. It should state its relation and class comparison statistics.
Apart from defining each of them properly, searching in the relation can take advantage of dif-
ferent properties of the relation space. Moreover, the sample generation operator should comply
to the decision making of the relation and class spaces.

The following sections consider two possible ways to exploit the structure in relation space.

3.2 Bottom-up Organization of Search

During the development of the SEARCH framework, no prior ordering among the relations in
VU, is assumed. We did not care, as long as a relation satisfied the delineation constraint. In
this section, I show that imposing a certain kind of ordering among the relations may lead to
some computational benefit. First, I define an ordering among the relations based on their

order and then show that considering relations according to this ordering is advantageous.
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Figure 3.1: Hasse diagram representation of the set of equivalence relations ordered on the
basis of a <,.
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The order of an equivalence relation r; € ¥, can be defined as the logarithm of its index
with some base a. I shall denote this by o(r;). The index of r; is then N; = a?(r) | Clearly,
the index grows exponentially with o(r;). The set of all these equivalence relations ¥, can be
partially ordered on the basis of a <,, defined as follows. If o(r;) < o(r;), then we say r; <, r;.
Figure 3.1 shows a Hasse diagram representation of such an ordering in a £ = 3 representation
scheme, which has a depth of 3. Choosing a low-order relation at the initial stage of search
when no regions are pruned out from future consideration is computationally advantageous.
The following discussion rationalizes this conclusion.

The fundamental idea is quite simple. Comparing classes can be relaxed as we did in the
previous chapter; two classes may be ordered with high confidence from a sample set. However,
completely discarding a class without taking a single sample can hardly be justified. Note
that construction of an ordering among N; classes requires (]2\7’) comparisons. Since N; grows
exponentially with the order of the relation, considering a relation of order in O({) demands
exponential complexity computation. Therefore it is essential that the indices of the relations
considered during the initial stages of the search when no regions are discarded are bounded by
some constant. The argument can be driven home using an example. Consider an aribitrary
problem in 3-bit sequence representation The order one relation f## has an index value of 2.
On the other hand, the index of an order two relation ff#, is 22. If a search algorithm starts
its search with relation ff# then the number of comparisons needed to construct an ordering

is going to be higher.
60

www.manaraa.com



Therefore, the order of the relation used at the initial stage of the search must be bounded
by a constant, k.; otherwise the complexity of the ordering process will itself be exponential in
£. Let us denote the set of relations 5., when ordered on the basis of the sequence, they are
considered by the algorithm by +(S,); also define ¥(¥, )<, to be the set ¥, partially ordered
based on the order of a relation.

One possible way to keep the complexity under control is to make v(5,) and y(¥, ), order-
preserving. In other words, if 71,7 € 5, C W, then if 75 comes after r1 in v(S,), then ry <, 711
in (¥, )<,. This gradual transition from low order relations to higher-order ones is what I call
bottom-up organization of the search. This points out a computational justification of a widely
reported, interesting observation about both natural and artificial complex systems. Complex
evolving systems are characterized by the gradual growth of patterns from smaller to larger.
A small pattern is the one in which the number of features in common to the members of
the observed set is less. This bottom-up approach, often observed in nature, seems to have a
fundamental computational foundation.

The following section considers another possibility of exploiting the structure of the set of

relations when ordered based on the order of the relations.

3.3 Implicit Parallelism: Parallel Evaluation of Equivalence

Relations

The discussion on bottom-up organization of search led to the solution of considering the
relations with low index values first. The structure of ¥,, when partially ordered based on
order of the relations, can be further exploited to make the relation evaluation process more
efficient. In this section I show that when the poset (¥, ).  is not linearly ordered, relations
can be evaluated in parallel at no additional sample evaluation. This observation appears to
be the underlying principle in the so called implicit parallelism (Holland, 1975).

The perspective of the blackbox search as an exploration through v(¥,)<  opens up an
interesting possibility. Parallel exploration along different branches in v(¥, )., can be done
at no additional cost compared to that along a single branch. Such parallel evaluation is
possible as long as 7(V,)., is not a totally ordered set. When ~(W¥,).  is partially

o
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ordered, there will be relations of the same order. Therefore, all these relations of the same
order can be evaluated using the same set of samples.

For example, the evaluation of ### f, ## ff can be performed at no additional compu-
tational cost in terms of function evaluations when the relations f###, ff## are already
evaluated. Little attention will make it obvious. Both f### and ### f divide the complete
search space into two different ways. Similarly, the relation ff## divides the same search
space in a different way than the one by ##ff does. Clearly, the same set of samples used
to evaluate classes 1### and 0### can be used for evaluating classes ###1 and ###0.
No additional function evaluation is needed for a constant confidence requirement; the samples
are just needed to be differently partitioned. In general, the sample set needed to evaluate a
particular relation r; of order o; can be used for all other relations of the same order. This
computational leverage can make an algorithm very efficient in solving the class of order k
bounded, delineable problems. As stated earlier, these problems can be solved by evaluating
a subset of all order k relations, whose intersection set is a singleton set. Since the globally
optimal solution can be found by simply taking an intersection among the top ranked classes
of this subset of all order k relations, the overall computational cost remains polynomial in the
problem dimension and the success probabilities.

At this point one must take a moment to put this argument into proper perspective. Our
definition of computational cost has been solely focused on the number of function evaluations,
i.e., the number of distinct samples taken from the search space. According to this definition,
parallel evaluations of several equivalence relations do not incur any additional cost. However,
consideration of every different relation required partitioning the same set of samples in a
different way, followed by the computation of the class comparison statistic. Although the
sample complexity remains the same, the overall time complexity increases.

The previous three sections described different components of BBO algorithm and pointed
two possible ways to exploit the structure in the set of relations provided to the algorithm.
These discussions naturally lead the reader to wonder about the computational limits of BBO
algorithms from the SEARCH perspective. The following section addresses this important
aspect of BBO—problem difficulty.
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3.4 Problem Difficulty in SEARCH

SEARCH presents an alternate perspective of problem difficulty in BBO. In this section I first
identify the main dimensions of problem difficulty in SEARCH and then precisely define a
characterization of difficult problems in SEARCH.

The expression for the sample complexity developed in the previous chapter immediately
leads to identifying different facets of problem difficulty in SEARCH. As we saw from Inequality
2.23 the sample complexity grows linearly with the size of the set of relations considered to solve
the problem, 5,.. Often this size depends on the “size” of the problem; the word “size” defines
a parameter £ that bounds the search domain. In a sequence representation with constant
alphabet size, the length of the sequences needed to represent the search space may be an

example of such a size parameter. This finally sets the stage for introducing problem difficulty

in SEARCH.

Definition 2 (Problem difficulty in SEARCH) Given an optimization function ® : X —
R and a set of relations V., we call a problem difficult for an algorithm if the total number of

samples needed to find the globally optimal solution grows exponentially with (, q, q,, 1/d*, and
1/dr.

The size of the problem is represented by f; ¢ denotes the bound in the overall decision
success probability in choosing the right classes; 1/d* defines the quality of the desired solution.
Both ¢ and 1/d* together can be viewed as representing the overall accuracy and the quality of
the solution found; ¢, is the bound in success probability in choosing the right relations, and
1/d? represents the desired quality of the relations.

The above definition of problem difficulty in SEARCH can be physically interpreted into

the following items:
1. growth of the search space along problem dimension
2. inadequate source of relations and decision making in relation space
3. inaccurate decision making in choosing classes

4. quality of the desired solution and relations
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Each of these is briefly discussed in the following.

The search space increases as the problem dimension increases. For many interesting classes
of problem the growth rate is exponential. This creates difficulty in solving the problem.

Solving a BBO in SEARCH requires a set of relations that properly delineates the search
space. If the number of relations in ¥, that properly delineate the search space is small, then
success probability in solving the BBO is very small. The previous chapter defined a simple
but meaningful measure of the overall appropriateness of ¥,., the delineation-ratio. This is the
ratio of the number of relations in W, that properly delineates and the total number of relations
in ¥,. When this ratio is high, searching for appropriate relations is easier, since most of the
members of the relation space are appropriate for properly classifying the search space. This
point will be illustrated in a later section of this chapter using some example problems.

The overall decision error in choosing the classes that contain the globally optimal solution
will be large unless the sampling is sufficiently rigorous. This is a source of decision error and
can cause difficulty.

The quality demanded for the solution can also make a problem difficult. If the desired
quality is very high, search in BBO may be difficult. Similarly, if the required measure of
appropriateness of relations needs to be very high, searching for relations may be difficult.

In a way this basically defines what it means to be efficient search in SEARCH. Therefore,
now it is quite natural to ask whether we can identify some classes of BBO problems that can
be solved in polynomial sample complexity. The answer is yes. However, the relation between
the set of relations 5, and the problem size ¢ cannot be quantified until we specifically consider
relations in physical terms. In the following section I consider the set of relations defined by
sequence representation and introduce the class of order-k delineable problems that can be
solved efficiently in SEARCH.

In the following section I introduce the class of order-k delineable problems in sequence

representation.
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3.5 Order-k Delineable Problems in Sequence Representation

The foregoing analysis treated the source of relations in a general way as an abstract entity.
However, defining a specific class of problems and studying its sample complexity in SEARCH
require relating 5, with the problem dimensions. In this section I consider the set of relations
induced by a sequence representation for defining the class of order-k delineable problems that
can be solved in polynomial sample complexity.

Although so far we have frequently used sequence representation for illustrating the concepts
with examples, in this section I consider specific properties of the set of relations induced by
sequence representation. Therefore, it may be appropriate to review the properties of this
representation first.

A sequence representation can be defined as
I:X — A", (3.1)

where A is the alphabet set. A particular position in a sequence may sometimes be called a
locus (loci in plural). The particular letter of the alphabet in a locus is called the value of the
locus. I will also assume a convention of naming in which the leftmost position is called the first
locus, increasing toward the right. This sequence representation induces a set of equivalence

relations,

v, = {fv#}g (32)

where f indicates values that must match for equivalence and # is a wild character that matches
any value at a locus. The cardinality of the set of all such equivalence relations ||V, || = 2°.

In sequence representation the order of an equivalence relation r; € V¥, is defined in the
same way as we did before; we just choose @ = A, as the base of the logarithm. The index of
r; is then, N; = Aolri),

As we see from Figure 3.1, ¥, can be structured as a lattice based on the relation <,. For

an { loci representation, the depth of the diagram is always €. The lowest level at order £, the
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relation divides the search space into singleton sets. Fach of these singleton sets can be reached
in at most ¢ steps. However, the problem is that when o(r;) = O((), N; = O(2*). Here O is
used to denote the order of complexity. Clearly, if we want to solve any arbitrary problem using
a (-loci sequence representation, in the worst case, the complexity is exponential.

It will be interesting to know what classes of problems can be solved in polynomial sample
complexity. In the following I define a class of order &k (a constant) delineable problems which

can be solved in sample complexity polynomial in ¢, ¢,, 1/d*, 1/d’, and the problem size (.

Definition 3 (Class of order k delineable problems) : Let us define a subset of ¥, con-
taining every order-k relation as follows: Vi,y<py = {ri t o(r;) < k & 1 € V,.}. For
a given class comparison statistic I;, a problem is order-k delineable if there exists a subset
U C Vio(ry<ky and at least one member of U’ has an order equal to k, such that its every mem-

ber, r; satisfies the delineation constraint with memory size M; and the size of the intersection

set,
G= U NCu1iClai Clais
a1,a2,"0k
is bounded by a polynomial of {, p({). Indices ay,as,...a; can take any value in between 1 and
M;.

These are the problems that can be solved by considering at most order-k equivalence
relations and enumerating the intersection set G. If a problem is order-k delineable in the
chosen representation, then once the good classes are detected within each of the relations in
U, a simple intersection should give us a set of ground classes of size G. Since by definition the
cardinality of this set is bounded by a polynomial in ¢, this set can be explicitly enumerated
to find the best solution among them. Since all the members in U’ properly delineate the
search space, the best solution of G is guaranteed to be the optimal solution. For this class of
problems, the set of relations needed to solve is §, C ¥'. Let us now find the bound on [|5,].
The best case scenario is when 5, contains {/k non-overlapping relations. Since the problem
is order-k delineable, there is at least one relation in S5, that has an order equal to k. In the
worst case, there are only one order k relation and ¢ — k order one relation in §5,. Therefore,
(/k < ||S;]] € € —k+ 1. The maximum possible index value of any relation in S, is [|A||*.

Although 5, may need at most £ — k£ + 1 number of relations, we do not need separate sample
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sets for each of them. The structure of the relation space can be exploited to gain computational
benefits. The order-k relation need a sample set for explicit evaluation. The same sample set
can be used to evaluate other order one relations. This is basically what we discussed earlier as
benefits of implicit parallelism. While solving this class of problem, the set 5, is not explicitly
given. The search for .5, from the set W, )<k} requires evaluation of all relations of order less
than k. Again the benefits of implicit parallelism can be exploited for this purpose. Therefore,
the k relations along any one particular path from the top node of figure 3.1 down to order-k
node need explicit evaluations. Relations along the other paths from the top can be evaluated
using the same sample set.

To achieve an overall success probability of ¢, the computational complexity,

1
log(1 — (qi) (R4 )TN~ Migin) )

SC < A" — +p(0). (3.3)
When ¢/q, << 1, this can be approximated as before,
(i) CEEEy T r—
SC < AR +p(0)

d*

This says that for fixed k, the class of order-k delineable problems can be solved with
complexity growing polynomially in ¢, 1/d*, and (.
Since by definition ., C W, )<k}, the search for appropriate relations is also restricted to

Vio(r)<ky- The cardinality of W y<py is
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Inequalities 2.19 and 3.4 can be used to find the computational complexity in the relation space

for this class of problems,

S 10g(1 — qfk_l/((g—kﬂ-l)(eﬁ)k(l_g)))

Ny —
.

(3.5)

This clearly shows that the computational complexity in the relation space is polynomial in
q¢r, 1/d,. We shall also clearly demonstrate that it is polynomial in { too. Note that = <
log(1 — z). Therefore,

fk_l/((f—k+1)(6f)k(1—9))

_ TR (e (1-9)) —4
log(1 — ¢, )2 1- qfk_l/((f—k-l-l)(eﬁ)k(1_9))‘

For constant k£ and €2, this can be written as

_bee
log(1 — qfk_l/((f—k-l-l)(ef)k(1—9))) > 1 iz
1—qr

where b and v are appropriate constants. Consider the ratio of this bound of the numerator of

inequality 3.5 and an exponential growth function a’, where @ is a constant, and take the limit

as { — o0o.

1i —¢'" 1 _
m =7 e = 0
{—00 a 1 — qgr

This proves that the the expression in Inequality 3.5 is also polynomial in £.
The following section considers the user’s role in solving a BBO. I consider two primary
roles of the user regarding the source of relations and the interactions among the relations and

the search operators.

3.6 Defining The Relation Space

In the SEARCH framework an algorithm searches for appropriate relations. However, this
requires first defining the relation space, in other words, the set of relations ¥,. Defining this
source of relations is one of the primary responsibilities of the user of a blackbox optimization

algorithm. Doing so requires some understanding about what it means to be an appropriate
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source of relations. The objective of this section is to discuss this, using the concepts developed
earlier in this thesis.

In section 3.6.1 [ note at least three possible ways to define relations over the search domain.
Section 3.6.2 considers the issue regarding proper delineation. This is followed by Section 3.6.3

which discusses the utility of the structure of the set of relations.

3.6.1 Defining relations

As we noted repeatedly in the previous chapter, relations can be defined in many different ways.

Some of the possible ways could be
1. representation,
2. perturbation operators, and
3. search heuristics.

I discuss each of them briefly in the following part of this section.

Representation can be directly used to define a similarity measure, and that can be exploited
to induce classes over the search domain. I already gave examples of such similarity measures
for the sequence representation. Let us consider another example using a different kind of
representation—disjunctive normal form (DNF'). This kind of representation is sometimes used
in machine learning. For the sake of simplicity, consider binary variables @1, 25, ...2,. A k-DNF

representation is defined as follows:

($1/\$2"'/\$k)\/($k+1/\$k+2"'/\$k+k)\/"'\/($n_k/\$n_k+1"'/\$n)

Relations and classes can be defined using this representation in a way exactly similar to what
we did in case of sequence representation. Replace some variables with the fixed position
corresponding to which equivalence is to be defined and substitute the wild character for rest of
the variables. For example, in 3-DNF representation, (fAfAF)V(F#EAHFAFE)V - -V(H#AH#ANH)
defines a relation. The classes within this relation can also be defined in a similar way, described
in the context of sequence representation.

Perturbation operators can also be used to define neighborhood and classes. In this ap-

proach, a state, x and an operator define a set of states that can be reached from state x by
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applying the operator to it. This defines a class of states. Therefore, an operator can be used
to divide the search domain into a set of overlapping classes. Many search algorithms use this
approach. Graph search algorithms like depth-first and breadth-first search (Rich & Knight,
1991) are some examples that can be viewed from this angle. Simulated annealing can also
be viewed from this perspective. Even GAs can also be viewed from this angle (Jones, 1995).
Unfortunately, most of these algorithms consider very restricted sets of of fixed operators, in
practice it is often like—one algorithm, one operator. This may severaly constrain the relation
space of the algorithm.

Search heuristics are another possible way to go. The basic idea is to use some a priori
chosen rules for assigning a priority in the order different regions of the search space is explored.
The use of a heuristic rule can be illustrated using a simple example. Let h(z) be a heuristic
rule that computes the set of states that satisfy the heuristic criterion, given that the current
state is . A heuristic-based algorithm computes h(z) and decides which state to visit next,
based on heuristic decision. Clearly, such heuristics divide the search space into a set of classes
based on heuristic preferences. This approach is quite popular in the Artificial Intelligence
community, where sometimes it is taken to an extreme end. The need for finding appropriate
relations is often replaced by assertions of relations using domain knowledge. Such extensive
domain knowledge is unlikely to be available in blackbox optimization problems. The field of
combinatorial optimization also makes use of heuristics. For example many heuristics have
been suggested for solving the traveling salesperson problem; the k-opt algorithm is one such
example. A* (Hart, Nilson, & Raphael, 1968) algorithm is another example from the body of
graph search algorithms. Just like the previous approach, heuristic based relations must satisfy
the delineation requirement. Therefore, use of a set of heuristics is more appropriate and search
for appropriate heuristics is essential.

This section described three possible ways to define relations. The following section considers

what makes a set of relations appropriate.

3.6.2 Proper delineation

Proper delineation of the search space is the most important requirement of a relation. Re-
gardless of how the relations are defined, they need to satisfy this fundamental requirement.

The greater the number of relations in W, that satisfy this requirement, the better it is. 1
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Table 3.1: A trap (f;) and one-max (f.) function in 3-bit representation.

X fd fe
11113 |3
110 | 0 | 2
1000 | 2
0110 | 2
100 1 |1
0011 |1
010 1 | 1
000 2|0

have explained these concepts in the previous chapter. In this section, I restrict myself only
to illustrate the use of the delineation-ratio for quantifying the appropriatness of a source of
relations using a simple example.

Searching for relations that properly delineate the search space may not be that useful, in
the case that most of the relations in ¥, defined by the chosen representation do not satisfy this
requirement. Earlier in this chapter, I defined the delineation-ratio as the ratio of the number
of relations in W, that properly delineates to the total number of relaions. For a given class
comparison statistic, memory size, and a BBO, the delineation-ratio reflects how easy the search
for better relation will be. Let us illustrate this observation by using the following example.
Consider the two functions defined in Table 3.1. Function f; is a trap function (Ackley, 1987)
in a deceptive representation (Goldberg, 1987), and f. is an one-max function. The one-max
function is known to be very easy to solve; on the other hand, the trap function offers a
great degree of difficulty to many algorithms beacuse of its isolation of the optimal solution
in the hamming space. Let us again consider class average as the comparison statistic. The
delineation-ratio of f. and fj are 1 and 1/8, respectively. Although this is for a particular class
comparison statistic, the qualitative distinction is likely to be invariant for other reasonable
statistics.

If the delineation-ratio is very small, then the representation is inappropriate, and we may
be better off choosing a new representation. One possible way is to adaptively construct a new

representation that redefines ¥,.
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The inequality bounding the sample complexity in SEARCH clearly tells us that the index
of a relation contributes to the sample complexity. The higher the value of the index, the larger
is the required number of function evaluations. Therefore, it is computationally advantageous
if the relations with low index, or low order, satisfy the delineation requirement.

The following section reminds us that implicit parallelism should be given consideration

while choosing the set of relations.

3.6.3 Ordering the set of relations

Earlier in this chapter we noted one interesting possibility—implicit parallelism—that exploits
the stucture of ¥, when organized based on the order (log of the index) of the relations. This
opens up the possibility of evaluating relations in parallel at no additional sample evaluation
cost. This is another factor that should influence the choice of the set of relations. Compu-
tational benefits of implicit parallelism increase as the lattice formed by ordering ¥, based on
the order becomes more bushy. This is a property of the chosen set of relations and it therefore
deserves due consideration.

The following section considers the role of operator-representation interaction in SEARCH.

3.7 Search Operators And Representation

Although in some BBO algorithms, search operators may be used to define the set of relations,
generating new samples from the search space for evaluating classes is one of their main pur-
poses. Since SEARCH treats relation and sample space as two seperate entities, in this section
I shall focus only on the sample generation aspect.

In SEARCH samples are always generated for some particular set of classes. A random
perturbation operator does not satisfy this requirement. This is discussed in Section 3.7.1. Once
the ordering among the classes is constructed, and once seemingly bad classes are rejected with
acceptable level of confidence, there is no reason to generate samples for them again. Therefore,
the perturbation operators need to follow the decisions made earlier. This is discussed in Section

3.7.2.
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3.7.1 Sample generation for equivalence classes

As 1 just said, the primary objective of a search operator is to generate new samples. Why
does a search algorithm need new samples? The perspective of the search, as an ordering
process among equivalence classes, says that we need new samples in order to compute the
class comparison statistic. Therefore, an algorithm does not just need any sample, that a
sample from some particular class. To accomplish this, the perturbation operators should be
told about the class for which the sample is needed. Clearly, a random perturbation operator
falls short of requirements.

Consider an example. To evaluate the class 11##, only those samples that have two consec-
utive 1s in first two bit positions are needed. Similarly for evaluating 1441, we need samples
with 1sin the first and last bit positions. Clearly the search operators need to know what class
is currently under evaluation. It should accordingly change its region of perturbation. In other
words, the search operators need to be adaptive to the direction of the search process. A little
more thought should make it clear that what we are really talking about is adaptive operator-
representation interaction. Sample generation for specific classes can also be accomplished with
a non-adaptive search operator when representation itself is adaptive. A simple example may
clear up the rationale behind this argument. Consider a 4-bit binary representation and a per-
turbation operator which generates new samples by randomly changing the third and fourth
bit values. Such an operator could never generate samples from class ##11. Now consider a 4
position representation in which every position has a data structure, which in turn comprises
a tuple (locus,value). The data locus tells the position where value should be placed in a se-
quence. For example, [(3,0)(0,1)(2,0)(1,1)] can be interpreted to the binary string 1100. Now
let us reconsider the same search operator that generates samples by perturbing only the third
and fourth positions. In the new representation scheme, the sample generation of class ##11
is quite straightforward, since locus is explicitly tagged with a value. The class ##11 can be
represented as [(3,1)(2,1)##] or [(2,1)(3,1)##]. This simple example illustrates that non-
adaptive search operators can also serve the purpose, provided that the representation itself is
adaptive. This section noted that the representation-operator interaction needs to be adaptive

to ensure proper sample generation. The following section points out that the perturbation
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Figure 3.2: Effect of low-order equivalence class pruning on future exploration. The classes
marked by circles need not be considered.

operators need to be controlled to ensure that they do not generate samples for the classes that

are already discarded.

3.7.2 Controlling the perturbation

Better control of operator perturbation is also needed for another reason. Consider the
subgraph shown in Figure 3.2. Let us say that the class ##0# is evaluated to be worse than
other order one classes of relation #7# f# and that it is eliminated from further consideration;
also assume that the class ###0 is rejected. This essentially means that all higher-order
equivalence classes such as #104#, and #00#, which are subsumed by the class ##0#, can
also be pruned out. Moreover, since ##7#0 is already pruned out, the samples generated
for evaluating classes #114# and #014# should be restricted from being a member of ###0.
The search operators need to keep track of the equivalence classes that are eliminated and
accordingly adapt themselves to generate appropriate samples. Again, a simple randomized
perturbation operator does not satisfy this requirement. Radcliffe (1993) discussed this desirable
feature of the perturbation operator in details.

The following section summarizes the major points of this chapter.

3.8 Summary

This chapter laid out the basic principles for understanding the three major entities in BBO,
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e search algorithm
e problem
e user’s role in defining the set of relations

The main points of this chapter are recapitulated in the following.

First we defined what it means to be an algorithm in SEARCH. Different components that
are required for solving a BBO problem in SEARCH are listed together and discussed. I hope
this will provide a common ground for developing new blackbox optimization algorithms in
the future. Before designing any new algorithm, we should ask several questions: how does
this algorithm process relations? How does it treat the classes? Does the operator for sample
generation follow the decision making in the relation and class spaces? What are the relation
and class comparison statistics? How does it take advantage of implicit parallelism?

Next, I discussed two important issues that may help make a BBO algorithm computation-
ally more efficient. It is also noted that the index of the relation considered in the beginning of
the search process should be bounded by a constant. The smaller the constant, the better it is.
This requirement is called bottom-up organization of search, which may have some biological
confirmation. It is noted that parallel evaluation of different relations at no additional function
evaluation is possible by exploiting the structural property of the set of relations, when ordered
based on the order of relations. I identified this as implicit parallelism (Holland, 1975).

This chapter also rigorously defined problem difficulty in SEARCH. The notion of problem
difficulty introduced here is philosophically very similar to the PAC-learning theory (Natarajan,
91). The SEARCH framework decouples problem difficulty along these dimensions:

1. problem size

2. success probability in making the right decision to choose a relation that properly delin-

eates the search space

3. success probability in selecting the class containing the optimal solution

e

. desired quality of relations and the solution

All of the above dimensions of difficulty, except problem size, came as a part of the development

of SEARCH. Identifying the exact quantitative dependence upon the problem size requires
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relating the size of the set of relations with problem size. 1 therefore considered a sequence
representation as the source of relations and introduced the class of order-£ delineable problems
that can be solved in polynomial sample complexity. This class of problems will be further
explored in the coming chapters.

The primary roles of the user of a BBO algorithm are to define the set of relations and
to choose the perturbation operators based on the chosen set of relations. I first note three
of the many possible ways to define relations over the search domain. The appropriateness of
a set of relations is quantified in terms of the delineation-ratio. Computational benefits can
be achieved by choosing a set of relations in which low-order relations satisfy the delineation
requirement and also parallel evaluation of relations is possible by exploiting the structure of
¥, when organized based on the order of the relations. All these factors contribute to the
efficacy of the set of relations. At the end, the role of perturbation operators is viewed from the
relation construction perspective. Perturbation operators need to generate samples for those
classes that are currently being evaluated. Therefore, search operators clearly need to know
about the classes for which they are going to generate the samples.

The SEARCH framework and its implications offered an alternate perspective of different
components of BBO. One of the main lessons of this framework is that the search for appropriate
relations is essential in BBO. In the following chapter I consider messy genetic algorithms, one

among the rare class of algorithms that searches for appropriate relations.
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Chapter 4

Design of the Fast Messy (enetic
Algorithm

The previous chapters introduced SEARCH—an alternate perspective toward BBO based on
relations and classes—and its implications toward BBO problem solving. SEARCH emphasizes
the need for searching for appropriate relations, since considering relations is essential to surpass
the limits of enumerative search. Unfortunately, not many blackbox optimization algorithms
realize this. In this chapter, I consider a rare class of algorithms that realize the need for
relation search, known as messy genetic algorithms (Deb, 1991; Goldberg, Korb, & Deb, 1989),
Historically, messy GAs came before the development of SEARCH, and therefore, messy GAs
deserve the credit for the first step toward the right direction.

Messy GAs are a new generation of genetic algorithms that originated from the lessons
learned from simple genetic algorithms (De Jong, 1975; Holland, 1975). Among others, poor
search for relations is one of the main weaknesses of the simple GA. Section 4.1 discusses the
strengths and weaknesses of simple GAs. Section 4.2 presents a brief review of the original
version of the messy GA (Deb, 1991; Goldberg, Korb, & Deb, 1989). Although the original
messy GA realized the role of the search for relations, one of the major problems of the original
messy GA was its inability to take advantage of implicit parallelism. The fast messy GA
(Goldberg, Deb, Kargupta, & Harik, 1993) was introduced to eliminate this bottleneck. The
fast messy GA (fmGA) replaces the explicit evaluation of equivalence classes by a partially

implicit evaluation that makes it computationally more efficient. Section 4.3 presents the design
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of the fast messy GA. The choice of thresholding parameter during the building-block® filtering
process plays a crucial role in the success of fmGA. The approach suggested by Goldberg,
Deb, Kargupta, and Harik (1993) for designing a filtering schedule may create some problems
in maintaining even growth of building-blocks during the late stages of the filtering process.
A modified scheme for thresholding selection and iterative applications are added to improve
its performance. Section 4.4 describes them. A detailed description of the new thresholding
scheme is presented in Appendix C. The overall organization of the modified fmGA is described
in Section 4.5. Finally, Section 4.6 discusses the main conceptual strengths of the fmGA and

points out directions for further improvements.

4.1 Lessons from the Simple GA

Genetic algorithms (GAs) (Holland, 1975) are stochastic search procedures based on simpli-
fied mechanics of natural genetics. Although the actual algorithms within this family vary in
different aspects, the simple genetic algorithm (sGA) (De Jong, 1975; Holland, 1975) captures
the essence of the GA proposed by Holland. A brief description of simple GA can be found in
Appendix B. Although the algorithmic implementation of the sGA is very simple, it is quite
interesting to note that the fundamental motivations (Holland, 1975) behind designing the
sGA share some common grounds with SEARCH. The first part of this section addresses some
strengths of the sGA and the latter half points out the major bottlenecks.

The simple GA has many interesting features. The main strengths of the simple GA can

be listed as follows:
1. It is possible to define a richer source of relations through representation.
2. Implicit parallel evaluations of relations can be attained.

3. Crossover does not change the decision made by selection for order-1 relations and it can

be made more faithful to the decision of selection for higher order relations (Radcliffe,

1991).

Each of these points will be briefly discussed in the following.

! A building-block is an instance of a class within the top M, classes of a relation r; that properly delineates
the search space.
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The first important aspect is that GA emphasizes the role of representation in search that
can be used to define a rich source of relations. From the very beginning, the design of GAs
has been primarily viewed in the light of the schema or equivalence class processing within the
partitions or relations defined by the chosen representation. Although the simple GA does not
explicitly consider the relations and classes, the fundamental motivation shares the spirit of
SEARCH.

Probably one of the most interesting observations that Holland made in his book (1975) is
the idea of implicit parallelism. He pointed out that by processing a population of size n, the
GA gathers information about O(n®) schemata. Although this argument was not rigorously
laid in terms of computational arguments, the SEARCH framework identifies and confirms the
concept in a quantitative manner. As I noted in the previous chapters, as long as the poset
¥(¥, )<, is not linearly ordered, the parallel structure can be exploited to evaluate different
relations simultaneously from the same set of samples. The computational benefits from the
parallel evaluations of relations have been identified as the benefits of implicit parallelism.

The crossover operator in GA offers some unique features. Unlike the random mutative
perturbation operators, crossover has some degree of capability to control the perturbation. If
an order-1 class is eliminated from the population by selection, crossover never regenerates that
class. Since crossover just swaps values at different loci, it cannot alter the overall distribution
of the different values at any locus. In other words, crossover respects the decision making at
the order-1 level by the selection operator. Unfortunately, this not true for higher-order rela-
tions. Radcliffe (1993) discussed related issues in details and suggested principles for designing
more “respectful” crossover operators. Apart from this, we also noted that SEARCH requires
resolution of relations that becomes computationally useful for problems that are delineable at
a certain level. Crossover can also be considered as an operator that generates samples from
an intersection set of different equivalence classes.

Despite these interesting features, the simple GA has several major problems. The main

bottlenecks of the simple GA are as follows:

e Relation, class, and sample spaces are combined.
e A lack of precise mechanism for implicit parallelism occurs.

e Only a poor search for relations can occur.
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Each of these points will be discussed in the following.

Since the relation, class, and sample spaces are combined, decision making in each of these
spaces affect the other two. Only one common measure defined by selection is used to decide
in both the relation and class spaces. Although the roles of each of these spaces in BBO are
related, the decision makings in each of them are distinctly different. As a result, the overall
decision making process becomes noisy and susceptible to error. The sGA does not have any
way to explicitly decide about relations or classes without affecting the other spaces.

The simple GA considers only a small fraction of relations defined by the representation. A
simple GA with one-point crossover (De Jong, 1975) favors those relations in which positions
in sequence space defining equivalence are closer to each other and neglects those relations that
contain equivalence defining positions far apart. One-point crossover also fails to generate sam-
ples for the intersection set of two equivalence classes in which fixed bits are widely separated.
For example, in a 20-bit problem, single-point crossover is very unlikely to generate a sample
from the intersection set of 1#4 ---#(first bit is fixed) and # ---#1 (last bit is fixed). In
biological jargon, this is called the linkage problem. Unfortunately, this is a major bottleneck of
sGA. Although Holland (1975) realized the importance of solving this problem and suggested
use of the inversion operator (Holland, 1975), it has been shown elsewhere (Goldberg & Lin-
gle, 1985) that inversion is very slow and unlikely to solve this problem efficiently. One-point
crossover is not the only type to suffer from this problem. Uniform crossover is another kind
of crossover (Syswerda, 1989) often used in the simple GA. In uniform crossover, the exchange
of bit values among the two parent strings takes place based on a randomly generated binary
mask string. If the value of this mask string at a particular locus is 1, the corresponding bits in
the parent strings get exchanged; otherwise they do not. Unlike one-point crossover, uniform
crossover does not have any preference bias toward the closely spaced partitions. Since the
relation space and the sample space are combined, random perturbation of the sample strings
also result in disrupting proper evaluations of the relations. Uniform crossover should also fail
to accomplish proper search in the relation space. In fact, this is exactly what Thierens and
Goldberg (1993) reported. Their analysis and experimental results showed that the sample
complexity grows exponentially with the problem size for solving bounded deceptive problems

(Thierens & Goldberg, 1993) using a simple GA with uniform crossover.
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This discussion clearly points out that the search in the relation space is very poor in the
case of a simple GA with either one-point or uniform crossover.

In the following section I discuss the messy genetic algorithm (Deb, 1991; Goldberg, Korb,
& Deb, 1989) that made serious efforts to eliminate one of the major bottlenecks of the simple

GA—poor search for relations.

4.2 Messy Genetic Algorithms: A Review

Messy GAs (mGAs) are a class of iterative optimization algorithms that make use of a local
search template, adaptive representation, and a decision theoretic sampling strategy. The work
on messy genetic algorithms (mGAs) (Deb, 1991; Goldberg, Korb, & Deb, 1989; Goldberg &
Kerzic, 1990; Goldberg, Deb, & Korb, 1990b) was initiated to eliminate some major problems
of the simple GA, as described in the previous section. The main strong points of mGAs are

listed in the following:

e The mGA eliminates the undesirable bias of sGA toward those relations that have all of

their equivalence defining positions close together.
e It adaptively modifies the representation-operator interaction;
e It precisely evaluates the equivalence classes.

The search for good relations is highly restricted in the sGA. The mGA addresses this bot-
tleneck of the sGA. The messy GA uses a relaxed, variable locus representation to solve the
linkage problem. Precise evaluation of equivalence classes is also emphasized in the mGA.
To keep things simple and well-grounded, the original mGA adopted an explicit enumeration
technique for evaluating the equivalence classes. This, of course, sacrificed all the benefits of
implicit parallelism. Construction of partial ordering among the equivalence classes is, again,
an important issue that the mGA took quite seriously.

This section reviews different aspects of the original version of messy GA (Deb, 1991). Sub-
section 4.2.1 discusses the representation in mGA. Equivalence classes are explicitly enumerated
and evaluated in the context of a template. Subsection 4.2.1 reviews this. Subsection 4.2.2 dis-
cusses the messy GA operators. Thereafter, Subsection 4.2.3 describes the overall organization

of the mGA. Finally, Subsection 4.2.4 discusses some strong and weak points of the mGA.
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4.2.1 Representation

The messy GAs relax the definition of representation used in the simple GA. Unlike the simple
GA, mGAs define the chromosome, i.e., the sequence-represented members of the population
as a collection of position-independent genes. A single gene is an ordered pair, (locus, value);
in a f-loci representation, the locus can be any value between zero and £ — 1, and wvalue is
any letter from the chosen alphabet. The locus identifies the actual position of the gene. For
example, consider a problem of length ¢ = 3. A sample messy string for this problem could be
((01)(20)(11)). This corresponds to the string 110 in a fixed-locus representation of the simple
GA. Although mGAs allow redundant and missing genes, the representation in mGAs is richer
than that of simple sequence representation even without considering them. Considering only
the final encoded string ready for evaluation, representation in mGA can be formally denoted

as

I, : X — S x AL,

where Sy is the set of all different permutations of integers zero through {—1. Note that the same
member of X' can be represented in different ways in this representation. To be specific, every
member of A" has (! distinct representations. This gives the mGAs an additional advantage
in searching for proper equivalence relations. Since the locus of a gene is explicitly specified,
related genes can be adaptively clustered during the search to minimize the effect of operator
disruption.

Another interesting aspect of the mGA is that it explicitly represents equivalence classes.
Every member of the mGA population represents an equivalence class of certain order. Unlike
the GA, where a population is comprised of only order-£ classes, i.e., the ground members, mGA
strings can be of any arbitrary non-zero order. The messy GA strings can be underspecified
or overspecified. For example, both ((0 1)(2 0)(1 1)(2 1)) and ((0 1)(2 1)) are valid messy
strings for a problem of length £ = 3. The first string is overspecified, whereas the second is
underspecified. Overspecified strings are mapped to A’ by left-to-right scanning of the strings
on the basis of first-come first-served preference. On the other hand, an underspecified string

of length k defines an equivalence class of order-£.
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Equivalence classes are explicitly represented by underspecified strings. Underspecification
is handled using a local search template string. A local search template is a locally optimal
string that remains unchanged during a particular iteration of the messy GA. Evaluations of
equivalence classes are performed in the context of this search template. The template has all of
its genes specified. The missing genes of an underspecified string are filled in by the template.
In our example problem, a template may resemble ((0 1)(10)(20)). The incompletely specified
string ((0 1)(2 1)) can be evaluated in the context of this template. The missing gene is filled
by the template, resulting in string ((0 1)(10)(21)).

The following section reviews the mGA operators.

4.2.2 Messy operators

The messy GA uses two main operators: (1) thresholding selection and (2) the cut and splice
operator. Thresholding selection constructs the ordering between the equivalence classes and
gives more copies to the underspecified strings representing the better classes. On the other
hand, the cut and splice operators are used to construct the intersection among the equivalence

classes. In the following discussion, I briefly describe the working of these two operators.

4.2.2.1 Thresholding selection

Selection generates more copies of the strings with higher objective function values. In a
tournament selection (Brindle, 1981; Goldberg, Korb, & Deb, 1989), construction of the order-
ing among the equivalence classes is accomplished by pairwise comparison of class members.
Thresholding selection tries to ensure that only classes belonging to a particular equivalence
relation are compared with one another. Consider the strings ((1 0)(0 0)), ((1 1)(0 1)), and
((10)(21)). The first two strings define equivalence classes 00#, 11# over the relation ff#.
On the other hand, the last string defines the class #01 over the relation #ff. Clearly, com-
paring the first two makes sense, because they are from the same relation; on the other hand,
the last string must be restricted from competing with the other two strings, since it belongs to
a different relation. Thresholding selection tries to accomplish exactly this, aside from the duty
of selecting better strings. A similarity measure € is used to denote the number of common
genes among two strings. Two strings are allowed to compete with each other only if their 8 is

greater than some threshold value §. The messy GA (Deb, 1991) used 8 = (1(5/(, where (1, {5,
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Figure 4.1: Cut operation.

H )

Figure 4.2: Splice operation.

and £ are the length of the two strings and the problem length, respectively. This expression is
the expected value of @ when the two strings are randomly picked from a randomly initialized
population (Deb, 1991). Thersholding selection basically implements a relaxed version of the
class comparison process within a particular relation.

The following subsection reviews the cut and splice operators in the messy GA.

4.2.2.2 Cut and Splice operation

The cut and splice operation simulates the behavior of crossover for different length strings.
Consider the strings ((1 1)(0 1)(2 0)) and ((2 1)(1 0)(0 1)(2 1)). The cut operation randomly
picks two points, one for each string. Let us say that it picks 2 and 3 for the first and second

string, respectively. The cut operation then splits the first string into ((1 1)(0 1)) and ((2 0)).
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The second string is also divided into the strings ((2 1)(1 0)(0 1)) and ((2 1)). The splice
operation swaps the split parts and generates new strings. In the current example, splice
operation generates the strings ((11)(01)(21)) and ((2 1)(10)(0 1)(20)). Figures 4.1 and 4.2
graphically depict the operation of cut and splice operators, respectively.

The following subsection describes the overall organization of the messy GA.

4.2.3 Organization of the messy GA

The messy GA works by iterating within two loops—the outer and inner loops. The variable
of the outer loop is the order of the equivalence relations considered. The inner loop constructs
the ordering among the equivalence classes of different relations of the same order and produces
a locally optimal solution by taking the intersection of the good equivalence classes using the
cut and splice operations.

Table 4.3 presents pseudo-code explaining the operation of the mGA. In the following dis-

cussion I explain the overall working procedure of the mGA.

¢ Outer loop begins: The outer loop iterates over the order of equivalence relation k. At
the initial iteration of the outer loop, £ may be chosen as 1 if no other prior information

is available. Initially, the template is randomly generated.
e Inner loop:

1. Initialization: The population is randomly initialized with each string of length
k, where k is the order of the currently considered equivalence relations. Precisely
speaking, the initialization of the messy population is not exactly random. Rather, it
makes sure that all 2% (i) different possible order-k equivalence classes are present in
the initial population. The objective function value of all these strings are evaluated

in the context of the template.

2. Primordial phase: The primordial phase constructs the ordering among the equiv-
alence classes by applying thresholding selection alone. A binary tournament selec-
tion operator (Brindle, 1981; Goldberg, Korb, & Deb, 1989) gives on average two
copies of the best string. Often, this results in continuing the primordial phase for

several generations. No function evaluation is performed during this phase.
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/* Initialization */
level = 1; template = random string; // Random initialization of the template
While(mga_termination_criterion == TRUE) )
{
t = 0; // Set the generation number to zero.
Initialize(Pop(t), level); // Initialize the population at random
Evaluate(Pop(t), template); // Evaluate the fitness values
Repeat // Enter primordial phase
{
Selection(Pop(t)); // Select better strings
Evaluate(Pop(t)); // Evaluate fitness
t =1t + 1; // Increment generation counter

}

Until (primordial termination criterion == TRUE)

t = 0;
Repeat // Enter juxtapositional phase
{
Selection(Pop(t)); Cut_and_Splice(Pop(t)); // Apply cut and splice operator
Mutation(Pop(t)); // Apply mutation
Evaluate(Pop(t), template);
t =1t + 1;
}

Until ( juxtapositional termination criterion == TRUE)

template = optimal string(Pop(t), level); // template remains locally optimal
level = level + 1;

Figure 4.3: A pseudo-code for original version of the messy GA.

86

www.manaraa.com



3. Juxtapositional phase: During this phase both thresholding selection and cut-&-
splice operators are used. Good strings are picked, cut, and then spliced to generate
better strings. Since new strings are generated during this phase, evaluation of the

objective function values is required in every generation.

4. Inner loop ends: The template is set to the best solution found at the end of the

juxtapositional stage of the previous iteration of the inner loop.

¢ Outer loop ends. The algorithm stops when the order of relations considered exceeds

a certain value or some other stopping criterion is satisfied.

The following section summarizes the strengths and weaknesses of the mGA.

4.2.4 Lessons from the mGA

The messy GA took the first step in the right direction. It realized the need for searching ap-
propriate relations. Explicit enumeration of equivalence classes and selection in the presence of
thresholding aid precise evaluation and ordering of classes. This made the messy GA applicable
to a larger class of problems, compared to sGA. The messy GA has been applied to different
kinds of problems, including several real-life applications (Deb, 1991; Dymek, 1992; Merkle &

Lemont, 1993). The main strong aspects of the messy GA are listed in the following:

1. It decomposes of the search space into two different spaces—(1) the sample space and (2)

the class and relation space.

2. Less noisy decision making occurs compared to the simple GA because of this decompo-

sition.
3. A better search for relations occurs.

Each of these points will be briefly discussed here.

The messy GA considers two distinctly different spaces—the population of strings and the
template space. During the primordial stage every string in the string population has a length
less than the problem length. FEach of them defines an equivalence class. Therefore, during
the primordial stage the string population represents the class space. On the other hand, the

template is always a full string, and this defines the sample space in the mGA. During the
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juxtapositional stage, however, the strings in the population become larger and gradually start
becoming full strings. The string population can still be viewed as the class space, precisely
the space of classes for order-£ relations, where £ is the problem length.

Since the main decision making in the mGA is made during the primordial stage, decompo-
sition of the search into class and sample spaces makes the decision making less noisy compared
to that of the sGA. The mGA uses an explicit enumerative initialization of the population.
This makes the decision making more accurate.

One of the most important aspects of the mGA is that it realizes the importance for finding
appropriate relations. Unlike the sGA, the search for proper relation in the mGA is more
accurate and less susceptible to error because of the explicit enumeration and the use of a
locally optimal template for class evaluations.

Despite these interesting features, the original mGA has some problems:

1. decomposition of the search space
2. single local search template

3. lack of implicit parallelism

I discuss each of them in the following.

The mGA takes one step ahead by decomposing the sample space from the relation and
class spaces. However, further decomposition may be necessary. The rationale behind this
observation originates from the role of thresholding selection in mGA. Thresholding selection
tries to find the better classes and also the better relations. The thresholding parameter is
always chosen less than the string length for allowing the elimination of bad relations. However,
since the relations and classes are implicitly defined in the string population, the construction
of ordering among relations influences that among the classes. For example, when thresholding
parameter # = 2 for a 4-bit problem, strings like ((0 1)(2 1)(1 1)) and ((0 1)(2 1)(3 0))
compete with each other. Although the idea is to eliminate bad relations, physically this means
comparing classes from different relations, which is inappropriate. The undesirable consequence
of this is that it also allows competition among classes from good relations. This needs further
study and experimentation.

By definition, the class comparison statistic of any algorithm is chosen in an ad hoc manner.

It is a source of algorithmic bias. It is the particular aspect of an algorithm that may make
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a class of problems either easy or difficult for itself. The messy GA is no exception to that.
Unlike sGA, in the messy GA, the population of strings explicitly represents the class space.
The template defines the sample space. Although the template is by definition a locally optimal
solution, at least in the initial stage, at the order-1 level of outer loop the template is randomly
generated. It is not clear how general the idea of comparing two classes based on a single sample
is.

The messy GA explicitly enumerates the 2% (i) order-k equivalence classes and evaluates
all of them. As we noted in Section 3, parallel evaluation of different equivalence relations can
be done at the cost of evaluating one relation. The messy GA does not take advantage of this
possibility at all. On the other hand, the simple GA takes advantage of this at the price of
high noise during evaluation of the classes. This lack of implicit parallelism is a major problem
of the messy GA. Although the sample complexity is still polynomial, for problems with even
a moderate order of decomposability, the population size becomes very large for any practical
purpose.

Among the above three, lack of implicit parallelism is the main computational bottleneck
of the original messy GA. The following section introduces the fast messy GA that preserves

the mGA’s search for good relations but returns some of the benefits of implicit parallelism.

4.3 The Fast Messy Genetic Algorithm

The simple GA harnesses the power of implicit parallelism, but at a higher price of noisy eval-
uation of equivalence classes. The sGA assigns credit at the string level, and the evaluation of
classes is completely implicit. The original messy GA went to the other extreme. It emphasized
the accurate evaluation of better classes by explicitly enumerating all-possible classes within
the all possible relations at some order-k and evaluating them in the context of a locally optimal
solution. The fast messy GA (fmGA), initiated by Goldberg, Deb, Kargupta, and Harik (1993),
takes a moderate strategy to balance both the ends.

The fmGA brings some of the benefits of implicit parallelism to the mGAs while retaining
some degree of accuracy in detecting good relations. An earlier work (Goldberg, Korb, &
Deb, 1989) reported discouraging results for overcoming this bottleneck. However, the fmGA

overcame this problem of the mGA using the following techniques:
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1. probabilistically complete initialization
2. building-block filtering in presence of thresholding selection

The probabilistically complete initialization replaces the explicit enumerative evaluation of all
AF (i) classes. The modified population-sizing becomes O((). The basic idea is to statistically
gather information about order-k equivalence classes by evaluating some order-{’ classes, where
B< <A

The building-block filtering in presence of thresholding selection offers a way to use the
primordial stage for gradually detecting the order-k classes from strings of length ¢/. During
this phase, strings are selected in presence of thresholding and genes are occasionally randomly
deleted for reducing the string length from ¢ to k.

The objective of this section is to present a detailed description of the fmGA. Section 4.3.1
discusses the probabilistically complete initialization technique that ensures proper decision-
making by selection. Section 4.3.2 describes thresholding selection. The fast messy GA gradu-
ally reduces the string length using thresholding selection and random gene deletion. Section

4.3.3 describes the string length reduction process.

4.3.1 Probabilistically complete initialization

In the original messy GA, all the order-k equivalence classes are explicitly enumerated. This
initialization is deterministic. The fast messy GA replaces this with a probabilistic technique.
Initial string length ¢/ and the population size are the two design factors of the initialization
process.

The basic idea behind the probabilistically complete initialization is that all the 2% (i)
equivalence classes can be defined using a much smaller number of strings, when the string
length is much higher than k. In other words, multiple combinations of classes can be defined
by the same string. The number of ways a string of size £/ > k contains a gene combination of
size k may be calculated by assigning k genes to the string and then choosing the total number
ways {' — k genes can be created from ¢ — k genes. This is simply (gf_kk). Note that the total
number of strings of size ¢/ created with ¢ genes is (ﬁ,). Thus if we take n, = (ﬁ,)/(ﬁf_kk)

string samples each of length ¢/ randomly, on average there will be one string that will have the
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Figure 4.4: The population size required to have one expected instance of a building block of
size k in strings of length (' is plotted against ¢/. The problem size { = 20 is assumed (from
[Goldberg, Deb, Kargupta, Harik, 1993]).

desired gene combination of size k; n, decreases exponentially as the string length (' increases.
Figure 4.4 shows the variation of n, versus ¢!. When ' = {, n, is a constant.

Detecting order-k building-blocks from strings of length ¢ >> k requires several sample
strings that contain the building-blocks. This is essentially a decision problem. Goldberg, Deb,
and Clark (1992) proposed a parametric decision theoretic approach to choose a sample size
that ensures that the building-blocks are detected with high confidence. They proposed the

population-sizing equation
ng = 2¢(a)f*(m —1)2F,

where m is the number of subfunctions and ¢(«) is the square of the ordinate of a normal random
deviate whose tail has an error probability «; ¢(a) will be denoted by ¢ in short. g is the ratio
of the variance and mean of the convolution of the distribution of the two competing classes

(Goldberg, Deb, & Clark, 1992). The overall population size can be computed by multiplying
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ng and ng:

n = nghg

(4)

= 2c%(m — 1)2F. (4.1)

()

The choice of ¢/ can be viewed as a trade-off between reduction in population size and

increase in error probability. As (' is increased, n, decreases quickly, but error probability
increases, since additional noise is introduced by additional bits. For all the experimental
results presented in this chapter, I used ¢/ = ¢ — k.

This probabilistically complete initialization process makes sure that all the order-k classes
are present in the initial population and they can be detected with high probability. Thresh-
olding selection increases the proportion of good classes. The following section discusses the

design of thresholding selection in the fmGA.

4.3.2 Thresholding selection

Thresholding selection is a selection operator that minimizes the competition among classes
from different relations. In this section, I describe the design of this operator in the fmGA.
Ordinary selection gives more copies to the better string. This, however, cannot restrict
competition among classes that do not belong to the same equivalence relation. Thresholding
selection is a kind of selection that restricts such undesirable competition. The thresholding
selection (Deb, 1991) is based on the tournament selection (Brindle, 1981; Goldberg, Korb,
& Deb, 1989). In the binary tournament selection, population members are ordered by pair-
wise comparison. Two members are randomly picked from the population and their objective
function values are compared with each other. The winner gets a copy in the next generation
population. On average, the best member of the population gets two copies in every gener-
ation. Thresholding selection restricts the way members are picked from the population. In
a binary thresholding selection, the first competitor is picked up randomly. The next com-
petitor is the first randomly-picked string from the population that has a certain threshold,
# number of genes in common with the previous string. For example, consider a problem of

length ¢ = 10. Let us say that the first candidate is the string ((0 1)(3 1)(5 0)(2 1)). If the
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chosen threshold parameter § = 4, then the string ((4 1)(3 1)(7 0)(5 1)) cannot compete with
it; ((30)(20)(00)(50)) can however, since it has 4 common genes with the first competitor.
When 6 is equal to the string length, only the classes that belong to a particular relation can
compete with each other. Ideally this should be what we want. However there is another
issue—the search for appropriate relations. As we know in a sequence space of { genes (i)
different order-k equivalence relations can be defined. The reader may recall from a previous
section that the probabilistically complete initialization of the fmGA generates classes for all
possible order-k combinations. In other words, the initial population contains classes from all
possible order-k equivalence relations. However, for any problem, it is likely that some relations
delineate the search space properly and some of them do not. The undesirable relations need
to be eliminated from future considerations. The fast messy GA tries to accomplish that by
allowing slight competition among the classes created by different relations. This is done by
making the thresholding parameter # less than the current string length. The idea is that this
relaxation will introduce competition among classes belonging to relations which share some
common genes. Such competition can eliminate the classes of bad relations. When 6 is made
less than the string length, the set of equivalence relations is divided into different overlapping
subsets. In the previous example, if we make § = 3, then the string ((0 1)(3 1)(50)(2 1)) can
match with classes of other relations, such as ((01)(3 1)(70)(20)).

The question is, How much should we relax the value of 7 Deb (1991) noted that in a
randomly generated population, the probability that a randomly chosen string is also a member
of the thresholding niche of a different class follows hypergeometric distribution. He computed
the expected number of common genes between two randomly chosen strings of length ¢; and

{y as
g=—=, (4.2)

where ( is the original problem length. Using # worked fine with the original messy GA. However,
in the fmGA, the string length is gradually reduced from ¢’ to order-k. As the selection is applied
to the population, the number of members of a thresholding niche drastically changes. From
our experiments it was clear that a choice of 8 = % is too relaxed when ¢ >> €1,05 >> k.

This resulted in large amount of cross-competition among the classes and elimination of some
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good classes. A conservative value for # can be chosen following the studies of Goldberg, Deb,

Kargupta, and Harik (1993). They suggested using,

6 = [% + d(a)o], (4.3)

where o is the standard deviation of the number of genes two randomly chosen strings of
possibly differing lengths have in common, and the parameter ¢/(a’) is simply the ordinate of
a one-sided normal distribution with tail probability a. The variance of the hypergeometric

distribution may be calculated as follows (Deb, 1991):

(=) (0 — ()
R T v (4.4)

implementation of thresholding selection searching for a competitor that has at least € genes
in common with the string picked first. Strings from the population are randomly picked
and checked for matching. If a match is found, the process stops, and a tournament among
them takes place. Otherwise, the search for a match continues for a certain number of times,
ns = agn, where a; is a constant between 0 and 1 and n is the population size; n, is called the
shuffle number.

However, even this approach does not solve the problem completely. Addressing this issue
requires a more fundamental approach toward understanding the thresholding process. Section
4.4.1 sketches an alternate approach to design the filtering schedule. However, before we discuss
that, it is essential that we first understand the process of string length reduction in fmGA.

This is described in the following section.

4.3.3 Building-Block filtering

During the primordial phase of fmGA, thresholding selection increases the proportion of the
better strings. However, in addition to that, the string length needs to be gradually reduced
to order-k. At this stage, order-k classes can be accurately evaluated in the context of the
common template, just as it is done in the messy GA. Gradual reduction of string length
is accomplished by random deletion of genes. This process of detecting the good classes by

thresholding selection and gene deletion is called building-block filtering. In this section I
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describe the design of building-block filtering process in fmGA as suggested by Goldberg, Deb,
Kargupta, and Harik (1993).

Reduction of string length by random gene deletion is a straightforward concept. Let us
first introduce some symbols. Consider the sequences of string lengths generated by successive
applications of gene deletion by A AM A0 AN The initial string length A(®) = ¢/
and the final string length AN are chosen to be some number close to k. Selection continues
for some number of generations with constant string length A to produce more copies of the
better strings. Note that these are selection-only generations and therefore no new function
evaluation is needed. This is followed by random deletion of genes which reduce the string
length to A1), These shorter strings are then evaluated and the same process of thresholding
selection and gene deletion continues until A9 = AV,

The gene deletion rate should be chosen so that it is on average less than the rate at which
better strings get more copies by selection. To correctly choose a building block of size k£ from
strings of length A=Y by picking A() genes at random, we need a building-block repetition

A Ak
building block. For large values of AU~ and A() compared to k, v varies as (AC=D /A(D)k We

factor v = (A(i_l))/(A(i_l)_k) strings to have one expected copy remaining of the desired

may choose A so that 4 is smaller than the number of duplicates generated by the selection
operator. Another way to design a gene deletion schedule is to fix v to a constant value much
less than 2!, where ¢, is the number of selection repetitions per length reduction. This is done
because we expect binary tournament selection to roughly double the proportion of the best
individuals during each invocation. Define the ith length-reduction ratio as p; = A /A(=1),
Using the asymptotic relation for y = (A(=D/AO)k = p=F

., we recognize that the assumed

fixed v roughly implies a fixed length-reduction ratio p = p;, for all 7, and we calculate the
total number of length reductions required to reduce the string length to O(k). Assuming final
string length equal to (k, where ¢ > 1, the number of length reductions (¢,) required is given

by the equation
0'/pt = (k. (4.5)

Simplifying, we obtain t, = log({/(k)/logp. This suggests that if the A() values are chosen

to make the deletion so that the length-reduction factor p is a constant, ¢, varies as O(log{).
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At the worst case when only one gene is deleted at a time, the complete filtering process is
bounded by O(().

Unfortunately, the growth of building-blocks can be uneven due to cross-competition among
the different blocks. Although the purpose of thresholding is to restrict such cross-competition,
the method of choosing a thresholding parameter suggested in Section 4.3.2 does not provide
a completely satisfactory solution. The following section suggests some further modifications

that bolster the performance of the fmGA.

4.4 Some Modifications

The success of the fmGA depends upon the ability of the building-block filtering process to
filter out the order-k building-blocks. Rigorous testing of the fmGA on different test function
pointed out that the methodology for designing the building-block filtering schedule described
in the previous section, does not give satisfactory performance all the time. This resulted in

taking a two-pronged strategy to improve the performance of fmGA as listed in the following:

1. Study the fundamental processes in the building-block filtering process and develop an

alternate methodology for designing the filtering schedule.
2. Apply fmGA iteratively at each level.

Each of them is discussed in the following sections.

4.4.1 Designing building-block filtering: An alternate approach

The approach for designing the building-block filtering schedule described in the previous
section makes a simplistic assumption. It assumes that binary tournament thresholding selec-
tion increases the number of strings containing good building blocks by a factor of 2%, where
ts is the number of times selection is applied. Although it is correct for binary tournament se-
lection (Goldberg & Deb, 1991a), it is indeed a very idealized picture of thresholding selection.
In this section, I take a more realistic approach to model the effect of thresholding selection.
The objective of the following discussion is to outline an alternate methodology for designing

the filtering schedule, which will be detailed in Appendix C.
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Figure 4.5: This figure shows the number of copies of building-blocks in the primordial gen-
erations for a 25-bit bounded deceptive problem (Goldberg, 1992e) with 5-bit subfunction size.
The filtering schedule is designed using the methodology described in previous section, origi-
nally presented in (Goldberg, Deb, Kargupta, Harik, 1993). This figure shows that during the
late stages of the primordial stage this approach suggests weaker thresholding that may lead to
uneven growth of building-blocks. Length reduction ratio, p = 0.5, population size n = 5000.

The objective of designing a filtering schedule is to make sure that all the strings containing
better building-blocks grow evenly. Unfortunately, a filtering schedule designed based on the
assumption that binary thresholding selection continues to evenly grow all the building-blocks
can lead to serious trouble. This can be illustrated by observing the growth of building-blocks
during the primordial stage with a filtering schedule designed based on the approach described
in the previous section. Figure 4.5 shows the growth of the five building-blocks corresponding
to the five subfunctions of a 25-bit problem. The population size is 5000 and the length
reduction ratio is 0.5. The chosen value of ¢/(a) is 2.0. Figure 4.6 shows the corresponding
filtering schedule. As we see from Figure 4.5, the filtering schedule developed using this simple
approach does not accomplish even growth of all the building-blocks during the late stages of the
primordial stage. In this case, one of the building-blocks starts growing at a rate much higher
than those of others. This eventually leads many building-blocks to the verge of extinction.

Clearly, the approach described in the previous section makes the thresholding too relaxed

during the late episodes of the primordial stage. Instead of simply increasing the thresholding
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Figure 4.6: This figure shows three graphs. The topmost one shows the string length re-
duction schedule. The other two graphs show the thresholding parameter values during the
different episodes of the primordial stage designed using two methodologies. Approach (a) de-
notes the scheduling procedure originally suggested by Goldberg, Deb, Kargupta, Harik (1993).
Approach (b) represents the alternate methodology developed in Section 4.3.4. Note that ap-
proach (b) offers a more restricted value of thresholding parameter during the late episodes of
the primordial stage, and this reduces the uneven growth of building-blocks.

parameter value by an arbitrary amount during the late episodes, let us first take some time to
understand the fundamental processes in thresholding selection and building-block filtering of

fmGA. There are primarily three design variables in building block filtering, namely

o threshold parameter value, 8 for a given string length,
o the duration for which selection continues before gene deletion is applied, and

e the number of genes deleted during a particular gene deletion operation.

Although thresholding minimizes comparison among classes from different partitions, it
allows a certain degree of cross-competition for eliminating the instances of bad partitions.
Unfortunately, this cross-competition can also act against our main objective—even growth of
building-blocks. The cross-competition among the instances of classes from different but good
partitions may result in eliminating one another. At the initial stage with a random population,

the effect of such cross-competition is minimal; however, this may become an acute problem
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at the later stages of the primordial phase unless the filtering schedule is properly designed.
We need a model of selection in the presence of cross-competition to address this problem.
Once we do that, we can decide how many times selection should be applied without making
cross-competition a serious problem.

Thresholding restricts a string from competing with some strings in the population. In other
words, thresholding creates a niche of a string within the population. Two strings are members
of the same niche if they can compete with each other. The whole population is divided into
such overlapping niches. The gene deletion operator of the fmGA removes some members of a
niche and also introduces some new members. One possible way to view the combined effect of
gene deletion and thresholding is to look at their effect on the thresholding niche. If the size of
the thresholding niche of a string is too small, its growth will be restricted; on the other hand,
if the size is too large, cross-competition among the strings from different partitions will be very
high. Therefore, one possible design objective for choosing a filtering schedule is to minimize
drastic changes in the size of the niche.

The number of genes deleted can be decided using a chosen length reduction factor as
described in the previous section. This approach does not suggest any change in this aspect.

It is possible to come up with a technique for designing a filtering schedule that uses a more
realistic model of thresholding selection in the presence of cross-competition among different
building-blocks and minimizes the changes in the size of the thresholding niche. This formu-
lation is somewhat involved, and it is presented in Appendix C. The building-block filtering
schedules designed using this approach have been more successful in maintaining all the differ-
ent building-blocks in the population. Figure 4.7 shows the growth of the five building-blocks
for the same problem considered in Figure 4.5. All the fmGA parameters are kept the same.
This apparently demonstrates that this approach offers a more successful way to maintain the

growth of all the building-blocks especially during the late stages of the filtering phase.

4.4.2 Tteration within each level

As we noted earlier, the messy GAs work level-wise, where each level corresponds to the order
of possible decomposability of the problem. Iterative application of the fmGA within each

level increases the chance of success. Those building-blocks that could not be detected during
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Figure 4.7: This figure shows the number of copies of building-blocks in the primordial gener-
ations for a 25-bit problem with 5-bit subfunction size. The filtering schedule is designed using
the methodology described in this section that tries to minimize the change in the size of the
subpopulations. This approach appears to be much more successful than the previous approach
in maintaining an even growth of all the building-blocks.

the first iteration may be detected in the later iterations, since the template now contains the
correct building-blocks identified in the previous iterations.

Iterative application of the fmGA within each level also becomes useful when very large
optimization problems need to be solved. For very large problems, the population size required
by fmGA becomes considerably large. When computer hardware is a constraint, iterative
application of the fmGA with suboptimal population sizing becomes a necessity.

This completes our discussion on different components of the fmGA. The following section

presents the overall algorithmic picture by combining all these different components.

4.5 Organization of the fmGA

Like the original messy GA, the fmGA goes through a level-wise processing of equivalence
classes. The selection-only primordial stage is replaced by a primordial stage that uses thresh-
olding selection and gene deletion for filtering out the building-blocks along with the proba-

bilistic initialization of population. The pseudo-code describing different steps of the fmGA is
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shown in Table 4.8. The working of the fmGA is very similar to that of the original messy GA.

The main differences of the fmGA are the following:
1. probabilistically complete initialization,

2. gradual reduction of string length by random deletion of genes during primordial stage,

and
3. iteration within the each level.

The following section summarizes the conceptual strengths and weakness of the fmGA.

4.6 Major Conceptual Underpinnings of the fmGA

The fmGA replaced the enumerative initialization (O(¢*)) of the original messy GA by an O(()
probabilistically complete initialization. Since the building-block filtering schedule can have at
most O(() steps, the overall sample complexity of the primordial phase is O((?).

The fast messy GA is one among the rare class of algorithms that realized the need for
detecting appropriate relations. The simple GA fails to work on many problems where its
assumptions about good relations does not match with the problem. The fast messy GA
eliminates this problem. Moreover, the fmGA takes a serious decision-theoretic approach for
proper evaluation of equivalence classes. It sizes the population to guarantee correct evaluation
with a certain degree of confidence. Another important aspect of the fmGA is that unlike the
original version of messy GA, it brings in some of the benefits of implicit parallelism.

However, the fmGA has some weak points too. First of all, the fmGA addresses only one
problem of mGA—the lack of implicit parallelism. Therefore, it still suffers from other problems
of the mGA, as noted in the previous chapter. In the following, I list some of the conceptual

weak points that the design of fmGA suffers from:

¢ Relation comparison is accomplished by comparing classes from different relations. As we
noted earlier, this is a general problem of thresholding selection. This leads to cross-
competition among classes from good relations, and as a result, maintaining all the

building-blocks during the filtering stages may become difficult.
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Since the primordial phase does not have any mechanism to construct strings with good
building-blocks, maintaining even growth of all the building-blocks is sometimes (espe-
cially for large problems) difficult. However, the iterative level-wise working of fmGA can

be used to gradually improve the solution.

e The thresholding selection during the building-block filtering process may also make the

algorithm slower, compared to the running time of the sGA and mGA.

e When string length is close to the problem length ¢, evaluation of strings on the basis
of a single template may not be accurate, and as I pointed out earlier, the whole idea
of comparing classes in the context of a single template should be investigated more

thoroughly.

The following chapter presents the results of testing the fmGA on different classes of prob-

lems.
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/* Initialization */
level = 1;
template = random string; // Random initialization of the template
While(fmga termination criterion # TRUE) )
{
Repeat // Iterative application of fmGA within each level
t = 0; // Set the generation number to zero.
Probabilistic Initialize(Pop(t), level); // Initialize the population
Evaluate(Pop(t), template); // Evaluate the fitness values
Repeat // Enter primordial phase
{
episode = O;
Repeat
{
Thresholding Selection(Pop(t)); // Select better strings
episode = episode + 1;
}
Until (episode < episode max(t))
GeneDeletetion(Pop(t)); // Delete Genes
Evaluate(Pop(t)); // Evaluate fitness
t =1t + 1; // Increment generation counter

}

Until (primordial termination criterion == TRUE)

t = 0;
Repeat // Enter juxtapositional phase
{
Selection(Pop(t));
Cut_and Splice(Pop(t)); // Apply cut and splice operator
Mutation(Pop(t)); // Apply mutation
Evaluate(Pop(t), template);
t =1t + 1;
}

Until ( juxtapositional termination criterion == TRUE)

template = optimal string(Pop(t), level); // template remains locally optimal

}

level = level + 1;

}

Figure 4.8: A pseudo code for the iterative fast messy GA.
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Chapter 5

Testing of the Fast Messy Genetic
Algorithm

The emphasis on searching for better relations and classes makes messy GAs attractive for
problems in which little knowledge is available about the good relations defined by the chosen
representation. However, the theoretical conclusions should also be backed by adequate experi-
mental results on sufficiently difficult problems. Unfortunately, like many other issues in BBO,
problem difficulty is yet another topic that is not well understood. Chapter 2 presented the
SEARCH perspective of problem difficulty in BBO. In this chapter I first design a testbed for
the fmGA using our understanding of problem difficulty and then report the test results.
Section 5.1 discusses different classes of problems with bounded difficulties. A testbed
is designed following the conclusions of this section. Section 5.2 presents the test results.
Section 5.3 discusses the qualitative significance of the experimental results. Finally, Section

5.4 summarizes the main observations of this chapter.

5.1 Design of Experiments

Designing difficult problems requires some understanding about the problem difficulty in BBO.
The objective of this section is to discuss the rationale behind the design of experiments for

testing the fmGA. The fast messy GA is tested against the following facets of problem difficulty:

1. problem size,
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2. bounded inappropriateness of the representation, the source of relations, and
3. sampling-noise.

Each of them is described in the following sections.

5.1.1 Problem size

Unfortunately, for most of the interesting BBO problems, the search space grows exponentially
with the problem dimension £. This does not necessarily mean exponential sample complexity
in SEARCH, since it tries to solve a problem using low-order relations in a probabilistic and
approximate way. However, the cardinality of the set of relations needed to solve a problem
in SEARCH depends on the size of the search space. Therefore, as we expect, the sample
complexity in SEARCH increases as the problem dimension increases. The later sections of
this chapter that present experimental results observe the growth of sample complexity with
problem size for certain classes of problems.

The following section considers the difficulty due to the inappropriate source of relations. I

consider one way to introduce bounded inappropriateness in representation—order-k deception.

5.1.2 Inadequate source of relations: Deception

Inadequate sources of proper relations that do not satisfy the delineation requirement can cre-
ate major trouble for a blackbox search algorithm. When the set of relations provided to the
algorithm does not have a suflicient number of appropriate relations, a search for good rela-
tions is useless and therefore success in solving the problem efficiently is very unlikely. The
delineation-ratio provides a way to measure the adequacy of the source of relations. As the
delineation-ratio decreases, searching for appropriate relations become more and more difficult.
Deceptive problems (Goldberg, 1987) offer one way to introduce problem difficulty by con-
trolled inappropriateness of the representation. The objective of this section is to discuss this
class of problems and explain the difficulty introduced by these problems from the SEARCH
perspective.

Although the fundamental idea of deception is quite general and can be used to quantify
inappropriateness of any arbitrary representation, traditionally deceptive problems have been

defined in the context of sequence representation with either binary (Goldberg, 1987) or n-ary
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alphabet (Kargupta, Deb, & Goldberg, 1992). Here we shall be restricted to binary represen-
tation. There exist several different definitions of deceptive problems (Bethke, 1981; Goldberg,
1987). Although all of them capture the fundamental idea, we shall use Goldberg’s definition

here.

Definition 4 (k-th order deception) Let & € X be a suboptimal point in the solution do-
main such that ®(&) < ®(z*), where x* is the optimal solution. Let C}; and C,; be the
schemata or classes in partition 1 that contain & and z*, respectively. A partition 1 is deceptive
if ®(Chy) > ®(C;,),Vj, where ® denotes the average objective function value of the distribution
within the class. A problem is called partially deceptive in the chosen representation if there
exists a partition that is deceptive. A problem is fully deceptive in the chosen representation if
all the partitions are deceptive. A problem is order-k fully deceptive if all the partitions of order

less than k are deceptive.

Deceptive problems provide a way to increase or decrease inappropriateness in representation
by controlling the delineation-ratio. As we increase the value of k, by definition of deception,
all the relations of order less than & do not properly delineate the search space. Therefore, the
number of relations that do not properly delineate the search space, and thereby the delineation-
ratio, decreases as k increases, and vice versa. When k is a constant, a representation with
k-th order deception becomes an instance of the class of order-k delineable problems and hence
is solvable in polynomial sample complexity. However, as we increase the value of k, solving
deceptive problems become more and more expensive, and the success probability decreases
due to the decrease in delineation-ratio.

Deceptive problems seem quite appropriate for testing an algorithm against bounded inad-
equacy in representation. They will play a major role in testing fast messy GAs. The following
section considers the possibility of making decision error in detecting good classes and the

resulting source of difficulty.

5.1.3 Inappropriate decision making: Signal and noise

SEARCH realizes the importance of decision making in BBO, and it takes a non-parametric
approach to compute the probability of decision error. However, this is not the first time it

has been addressed. Several efforts (Goldberg, Deb, & Clark, 1992; Holland, 1975; Kargupta,
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1995b; Rudnick & Goldberg, 1991) have been made for quantifying the sampling error in the
decision making processes in search. In this section I first briefly review these efforts. Finally,
I pose a generalized signal-to-noise measure using a Bayesian approach developed elsewhere
(Kargupta, 1995b) and define crosstalk (Goldberg, Deb, & Thierens, 1993) as a possible source
of decision error.

Holland (1975) used the bandit framework for developing an “optimal” trial allocation
strategy in genetic algorithms. Holland considered the decision-making in a single bandit and
developed a sampling strategy that minimize the overall loss.

A similar parametric approach was taken by Rudnick and Goldberg (1991) and by Goldberg,
Deb, and Clark (1992). They explicitly computed the error probability for determining the
sample size (population size) in GA. In a parametric approach, the underlying distribution is
assumed. Therefore, to compute the error probability in choosing a better class out of the two
competing classes using parametric approach, we need to know the underlying distribution. By
central limit theorem (Feller, 1959), the random variable, representing the objective function
value of the observed samples from a class, is normally distributed. This observation lies at
the heart of their parametric formulation of decision error probability. The mistake probability
depends on the distribution of the convolution of two competing classes (say, CA'N' and CA';W)
By central limit theorem, both i)jﬂ' and (i)k,i are normally distributed with mean p;;, pir; and

k.t

. O54 O . . . . . . -
variance -2+ —t respectively. The mean and variance of the underlying distribution ®;; are

p;: and o;; respectively. The convolution of i)jﬂ' and (i)k,i is also normally distributed. The
mean and variance of the convolution distribution are (p;; — p ;) and (% + %), respectively.
The error probability can be approximated by the tail of the normal distribution. The sample

size can then be appropriately chosen for a desired level of error probability. This can be done

by finding an error probability a such that

A 2
2’2(04) — (lu]J ,Uk,z)

52 -2
J,t k.t
n —I_ n

where z(a) is the ordinate of the unit, one-sided normal deviate. The corresponding sample

size can be found by

2 2
Oii+ Ok

2
n = AN
( (Hji = pri)?
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= (a) (%)2.

The term d/o is often called the signal-to-noise ratio of the convolution. Goldberg, Deb,
and Clark (1992) considered the evaluation of different partitions independent of each other.
Holland’s analysis on optimal allocation of trial also considered decision making for a single
partition. Grefenstette and Baker (1989) pointed out some of the restrictions of the independent
partition perspective of a GA.

A more general version of the signal-to-noise framework that accommodates mutually de-
pendent simultaneous decision making has been recently proposed elsewhere (Kargupta, 1995b).
This approach can be explained by considering a simplified case. Consider two relations r; and
r;. Assume that both of them have an index value of 2. Let us denote the two classes, defined
by relation r;, by C}; and C ;. When they are compared with each other using some statistic
7, then C; <7 C,; defines a convolution variable. Let us denote this by s;. Similarly, for the
relation 7;, the comparison among (', ; and (s ; can define a convolution variable s;. For some
x number of relations, a vector of such convolution variables can be defined. Let us denote
this convolution vector by s. The overall decision error probability (p) depends on the joint
distribution of these convolution variables. As the search algorithm generates new samples, the
state of the convolution vector s changes. This in turn changes the error probability p. If we
denote the change in s by és, and expand p(s + és) along any particular s; using the Taylor
series, then it can be shown that p(s + 6s) depends on E[és;] and covariance(ds;, 6s;). Higher
order terms of the Taylor series can also be considered. However, we choose to neglect them
for the sake of simplicity. The generalized signal-to-noise measure can now be defined as

E[6s]

>, j covariance(ds;, 6s;)

Signal-to-noise measure =

(5.1)

The expected fluctuation (numerator of Equation 5.1) toward the desired decision is viewed as
the signal, and the random effects represented by the covariance term in the denominator is
called the noise.

This signal-to-noise measure can be used to understand the decision-making process from
a different angle. Both a wrong signal and increased noise can cause decision error. Noise can

be introduced into the convolution kernel from two different sources:
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1. Intra-partition noise originates from the individual variance terms (the diagonal elements)
of the covariance matrix. This is essentially very similar to the collateral noise defined in

(Rudnick & Goldberg, 1991).

2. Inter-partition noise originates from contributions from the off-diagonal terms of the co-

variance matrix.

Intra-partition noise has been addressed in (Goldberg, Deb, & Clark, 1992; Holland, 1975;
Rudnick & Goldberg, 1991) The role of inter-partition noise was also noted by Goldberg, Deb,
and Clark (1992). Kargupta (1995b) explicitly addressed inter-partition noise from the signal-
to-noise framework. The difficulty in decision making, caused by the cross-covariance terms
(i.e. off-diagonal terms), is called crosstalk.

Decision making can be made difficult by several means. Following Goldberg, Deb, and

Thierens (1993), I list some of the possibilities here:
e multimodality of the objective function
e noisy objective function
e operator introduced noise
¢ intra-partition noise
e crosstalk

Among them, problems with crosstalk have received little attention. However, there is enough
reason (Forrest & Mitchell, 1993; Kargupta, 1995b) to believe that crosstalk can offer a great
degree of difficulty by increasing noise during the late stages of search. Problems with multi-
modality intra-partition noise and crosstalk will be used to test fmGA.

The following section presents the experimental setup and the results.

5.2 Experimental Results

The fast messy GA is used to solve different test functions. The test problems are designed
using our understanding of problem difficulty, as described in the previous section. The fast

messy GA is primarily tested against three aspects: (1) growth of search space, (2) bounded
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inappropriateness in representation, and (3) sampling-noise. This section presents the results
of the experiments.

The test set up is briefly described in Section 5.2.1. Results for large order-3 and order-5
deceptive problems are reported in Section 5.2.2. This is followed by results for several bounded
deceptive problems with different scaling and mixed sizes of the building-blocks. I consider the
problems used in Deb and Goldberg (1993) and present the results in Section 5.2.3 through

5.2.6. Problems with crosstalk are considered in Section 5.2.7.

5.2.1 Experimental setup

Two different classes of problems are used to test against the different aspects of problem

difficulty listed earlier. These two classes are
e bounded deceptive problems
e royal road functions

Deceptive problems test an algorithm against inappropriateness of representation up to a certain
order. Trap functions (Ackley, 1987) are known to be deceptive (Deb & Goldberg, 994b). I use
trap functions to construct several classes of deceptive problems of different sizes and different
scaling. Bounded deceptive problems are also multimodal. This will be pointed out later when
we construct them.

The royal road functions (Forrest & Mitchell, 1993) are reported to have crosstalk elsewhere
(Kargupta, 1995b). Problems with crosstalk offer difficulty by making the decision process noisy.

Before I present the experimental results, I would like to remind the reader that unlike
the simple GA, messy GAs do not assume any prior knowledge about the linkage, i.e. what
the good relations are. Therefore, they have to pay the computational price for it which may
sometime require more function evaluations compared to an algorithm like the simple GA
which assumes linkage information. The following section present the test results for bounded

deceptive problems.

5.2.2 Test function 1: Bounded deceptive problems

Order-£ delineable, bounded deceptive problems of any arbitrary length can be constructed by

concatenating fully deceptive subfunctions of size k one after another as described by Goldberg,
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Deb, and Clark (1992). This section presents the test results for such deceptive problems with
different values of k, in which each of the subfunctions is uniformly scaled.
5.2.2.1 Order-three deceptive problems

This test function is constructed by concatenating multiple numbers of order-3 subfunctions.
Each of these subfunctions is an order-three trap function. The particular version of the trap

function used can be defined as follows:

fle) = € if u=14(

{—1—wu otherwise,

where u is the number of 1s in the string z and £ is the string length. The chosen problem
size £ = 90. Therefore, the number of subfunction is m = 30. If we carefully observe this
trap function, we shall note that it has two peaks. Omne of them corresponds to the string
with all 1s and the other is the string with all 0’s. Since { = 90, the overall function contains
30 subfunctions; therefore, this function has 23° local optima, and among them, only one is
globally optimal.

The population-sizing equation developed elsewhere (Goldberg, Deb, & Clark, 1992) is used
for choosing the population size. By noting that 8 = 1 for order-3 trap function, this equation
can be reduced to n = 162%(m — 1)n,, where n, is the factor contributed from the probabilisti-
cally complete initialization of the fmGA. For an order-3, 90-bit problem with the initial string
length of 87, n, = 1.1 and m = 30. With z? & 9, the population size becomes approximately
4500. This was the chosen population size. Figure 5.1 shows the performance of fmGA along
generations for a 90-bit order-3 deceptive trap function. Three sets of data are presented, with
each corresponding to a different level of fmGA. Figure 5.2 shows the corresponding building
block filtering schedule, specified by the sequence of thresholding parameter and the string
length. The total number of function evaluations needed is 256,500. For all the runs of this
section, the initial template is randomly generated, unless otherwise noted. Binary threshold-
ing selection with a shuffle number equal to the population size is used for all the experiments
reported in this chapter. For every experiment, the cut and splice probabilities are chosen to

be 0.04 and 1.0, following Deb (1991).
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Figure 5.1: Maximum objective function value in different generations for a 90-bit, order-3
deceptive trap function. The fast messy GA found the best solution at the end of the third

level. Population size, n = 4500
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The following section considers order-five deceptive functions.

5.2.2.2 Order-five trap functions

Problems comprised of order-five trap functions are constructed in a way similar to the
construction of order-three deceptive functions. The same trap function is used to generate
bigger functions by concatenating order-five subfunctions together. For order-5 trap function,
8 = 1.4, and therefore, population size n = 90z*(m — 1)n,. The population size for an order-5,
100 and 150-bit problems is around 7500 and 8500, using values of 4 and 3 for z? respectively.
Figure 5.3 and 5.5 show the building-block filtering schedules for 100 and 150-bit problems.
Figure 5.4 and 5.6 present the performance of fmGA for these two problems. The fast messy
GA found the best solution for the 100-bit problem. A confidence factor of 3 corresponds to
an error probability of approximately 0.03 in normal tail. Since (1 — 0.03) % 50 =~ 147, the
performance of the fmGA matches the prediction. The total number of function evaluations for
the 100-bit and 150-bit problems are 100, 5000 and 425, 000 respectively. Note that the number
of function evaluations for the 100-bit problem is larger than that for the 150-bit problem
because in the former case, the fmGA found the best solution after several iterations; on the
other hand the fmGA could not improve the best solution of the first iteration using additional
iterations. Since these are big problems and population sizes are quite large, only order-5 level
of the fmGA is run with a locally optimal template in order to reduce the computation time.

The next immediate step is to test the fmGA for even larger problems. However, since the
population sizing equation is exponential in k, optimal population size becomes very large for
larger problems even for order-5 deceptive problems. For example, in a 200-bit problem with
initial string length of 195 the population size n = 39002%. For any reasonable choice of 2
population size becomes very large. Therefore, we choose to experiment the degradation in
the performance of the fmGA with the increase in problem size, keeping the population size
constant. Again, practical consideration of the available hardware leads us to assume a locally
optimal template with all zeros and only the order-5 level of the fmGA is run.

Figure 5.7 shows the degradation of performance for a constant population size of 5000
in even larger problems. The best solution found by several level of regular fmGA iterations
is reported. Let us spend some time on this graph. When the number of subfunctions is

20 (i.e., a 5 x 20 = 100-bit problem), a population size of 5000 has a confidence factor ¢ =
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Figure 5.3: Building-block filtering schedule for order-5 level of a 100-bit problem.
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Figure 5.5: Building-block filtering schedule for order-5 level of a 150-bit problem.
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5000

o83 ~ 2.4, according to the population sizing equation developed by Goldberg, Deb, and Clark

(1992). A confidence factor of 2.4 corresponds to an error probability of 0.07 in the tail of
normal distribution. The performance of the fmGA matches with this prediction. For the 40
subfunction problems the corresponding error probability is approximately 0.25. This again
seems to match with the prediction of the population sizing equation.

In real applications different parts of the problem may be differently scaled and the subfunc-
tions may be of different sizes. The original messy GA (Deb & Goldberg, 1993; Goldberg, Korb,
& Deb, 1989) was tested on many test functions with nonuniform scaling and with subfunctions
of mixed sizes. In the following sections, I present the experimental results of testing the fast

messy GA against those functions.

5.2.3 Test function 2: Nine up, one down

This test function is designed using order-3 deceptive trap functions. Ten 3-bit deceptive

functions are concatenated to form a 30-bit problem. The leftmost subfunction is scaled down

by a factor of three, and the remaining subfunctions are scaled up by a factor of seven. The
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Figure 5.10: Test function 2: Number of function evaluations along generations, starting from
the order-1 level.

objective is to test the fmGA against problems in which different variables of the problems are
differently scaled.

Since the problem size is smaller than that of the previous test problems, using the simpler
approach for designing the building-block filtering schedule as suggested in Goldberg, Deb,
Kargupta, and Harik (1993) is appropriate. I therefore take this simpler approach to investigate
how well it works for problems with small sizes. For all Sections 5.2.3 through 5.2.6, the level-
wise fmGA is used starting from the order-1 level, initialized with a randomly chosen template.
No additional iterations within each level was required for any of these test cases.

Figure 5.8 shows the string length reduction schedule and the corresponding threshold pa-
rameter values. The chosen population size for this and all the following test problems is 2000.
Figure 5.9 shows the performance of the fmGA on this test function. The fast messy GA suc-
cessfully found the correct solution for all the subfunctions by the end of the third level. Note
that the four sets of data are plotted in the same figure. Fach of these data sets comes from an
fmGA run at a particular level, starting from one through four. Figure 5.10 shows the growth

of the number of function evaluations along generations.
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5.2.4 Test function 3: One up, nine down

This test function is designed again using order-3 deceptive trap functions. Ten 3-bit decep-
tive functions are concatenated to form a 30-bit problem. The leftmost subfunction is scaled up
by a factor of seven, and the remaining subfunctions are scaled down by a factor of 3. Figure
5.11 shows the performance of the fmGA on this test function. The fast messy GA successfully
found the correct solution for all the subfunctions, by the end of the third level. Figure 5.10
shows the growth of the number of function evaluations along generations, starting from the

order-1 level.

5.2.5 Test function 4: A linear scaling

The same 30-bit problem is used to construct this test function, with the only difference
in scaling. In this case a linear scaling is used. All the subfunctions are numbered, starting
from left to right. The leftmost subfunction is numbered 1, the next one gets 2, and so on.
Denote this number by «. The scaling factor of the subfunction with number « is 10a. The
first subfunction is scaled by a factor of 10, the second one is scaled by 20, and so on. Figure
5.13 shows the performance of the fmGA for this test problem. The fast messy GA successfully
found the correct solution for all the subfunctions by the end of the third level iteration. Figure

5.14 shows the growth of the number of function evaluations along generations.

5.2.6 Test function 5: Problems of mixed sizes

This test function is constructed by combining different sized subfunctions. A 31-bit prob-
lem is designed by concatenating one 3-bit subfunction and seven 4-bit subfunctions. All the
subfunctions are fully deceptive trap functions. Figure 5.15 shows the performance of the fmGA.
The fast messy GA successfully found the correct solution for all the subfunctions by the end of
the fourth level iteration. Figure 5.16 shows the growth of the number of function evaluations

along generations. The following section considers the royal road functions.

5.2.7 Test function 6: Royal Road functions

Forrest, Mitchell, and Holland developed a class of functions known as royal road functions,

as shown in Table 5.1. Royal road functions introduce difficulty for Simple GA by introducing
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Figure 5.11: Test function 3: Best solution of different generations. The optimal solution is

found at the end of the third iteration.
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Figure 5.12: Test function 3: Number of function evaluations along generations, starting from

the order-1 level.
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Figure 5.13: Test function 4: Best solution of different generations. The optimal solution is

found at the end of the third level.
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Figure 5.14: Test function 4: Number of function evaluations along generations, starting from

the order-1 level.
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Figure 5.15: Test function 5: Best solution of different generations. The optimal solution is

found at the end of the fourth level.
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the order-1 level.

122

www.manharaa.com




String | Fitness (R1) | Fitness (R2)
LA ##H#H#HH 8 8
#lA##H#H#H 8 8
#HLH#H#HH 8 8
#HA#LHH#H#H 8 8
#HH#HHHH 8 8
#HH#HH1HH 8 8
#HH#HHHH 8 8
#HH#H#HHH]L 8 8
L1 ###H##H# +16
#H#L 1 #H#H#H# +16
#HH#HL L #H# +16
#H#H##HL] +16
L1111 #444# +32
#HH#EH#1111 +32

Table 5.1: R1 and R2: A single 1 and single # symbol represent 8 1s and 8 null characters
respectively. If a string is an instance of any of the above hyperplanes, it gets the associated
pay-off. For R1, the optimal solution has 64 1s, its objective function value is 64. R2 gives
additional reinforcements (denoted by +) for multiple sets of eight consecutive 1s. The optimal

solution for R2 is the one with 64 1s with a function value of 192.
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Figure 5.17: Variation of the signal-to-noise ratio along generations. Signal-to-noise ratio is
averaged for all the order-1 partitions. This clearly shows that decision making in R1 should

be easier than that in R2.
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crosstalk noise into the convolution kernel. In the beginning of this chapter, I defined crosstalk
and pointed out this property of royal road functions. The primary objective of this section is to
present the experimental results for demonstrating the performance of the fmGA on royal road
functions. However, before we do that, let us briefly review crosstalk in royal road functions.

R1 does not allocate bonus credit to the intermediate building blocks; on the other hand,
R2 does. It has been reported (Forrest & Mitchell, 1993) that the sGA finds solving R2 difficult
compared to R1. The question is: If detecting good relations and good classes is made easier
by introducing these additional bonus credit, then why is it that the sGA finds R2 difficult?
The answer to this question is quite straightforward. These additional credits do not make
the decision-making any easier. It has been shown by Kargupta (1995b) that these additional
credits introduce covariance noise. As we recall, we defined crosstalk as the aspect of problem
difficulty introduced by the covariance among the different partitions. R2 introduces difficulty
due to crosstalk. Figure 5.17 reproduced from (Kargupta, 1995b), shows that the signal-to-noise
ratio is much lower in R2 compared to R1. Therefore, decision-making becomes more difficult
in R2. Kargupta (1995b) constructed other instances of similar problems with crosstalk that
may be difficult to solve, in which decision makings for different relations are not independent.

The simple GA does not have any mechanism to restrict cross-competition among different
partitions (relations). However, the thresholding selection of the fmGA tries to minimize the
competition among classes from different partitions. Therefore, it will be interesting to observe
the performance of the fmGA for this class of problems. The following part of this section
presents the test results.

The fast messy GA is used to solve both of these problems with a population size of 4000.
Figure 5.18 shows the building-block filtering schedule, that is, used for solving both R1 and
R2. Figure 5.19 and 5.20 show the best solution found in different generations for R1 and R2,
respectively. The total number of function evaluations needed to solve R1 and R2 are 204,000
and 136,000, respectively. For all the runs on the royal road function, the chosen template was
locally optimal, a string of all zeros. Again, like the large bounded deceptive problems, we
skipped the low-order levels and used order-8 level fmGA with multiple iterations within. Note
that the number of function evaluations is less in the case of R2. As we noted earlier, the fmGA

seems to be more resistant to crosstalk because of the presence of thresholding selection.
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Figure 5.18: R1 & R2: Building block filtering schedule.
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Figure 5.19: R1: Best solution found in different generations. The optimal solution is found

at the end of the second iteration.
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at the end of the first iteration.

A different version of the royal road function has recently been proposed (Jones, 1994). I
shall refer to this function by R3. R3 can be defined as follows. Let us assume that j and ¢
index the levels of hierarchy (1 is the lowest level) and target classes (1 is at left), respectively.
There are 2% target classes at level 1 and 2577 target classes at level j + 1. Each target class is

defined over some b loci. Define

®1(j) = W+ (n(G)— D if n(j) >0

= 0 if n(j)=0,

where n(j) is the number of found targets at level j; ™ and u are parameters such that v* > u.

Now define

m(i) = number of loci that have values common with the optimal solution in class 7.

Then,
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Figure 5.21: R3: Building block filtering schedule.

= —(m()—m™)v if m"<m(i)<b

= 0 otherwise

Now we can define the function R3:

R3(z) = Z ®1(j) + Z Dy(i)

parameter setting, the maximum possible objective function value is 12.8.

following section analyzes the experimental results presented in this chapter.
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The fast messy GA is used to solve R3 without any prior knowledge about the linkage infor-
mation. The used parameters for defining R3 are as follows: £ = 240, b = &8, k = 4, u* = 1,

w = 0.3, v = 0.02 and m* = 4. Each target schema is separated by 7 intervening bits. For this

A population size of 2000 is used for this set of runs. Figure 5.21 shows the building block
filtering schedule that is used for solving both R1 and R2. Figure 5.22 shows the best solution
found in different generations for R3. The total number of function evaluations needed to solve

R3 is 302,000. The fast messy GA found the correct solution at the end of third iteration. The
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Figure 5.22: R3: Best solution found in different generations. The optimal solution is found
at the end of the third iteration.

5.3 Analysis of Results

The fast messy GA has been tested against different kinds of order-k delineable problems that

can be solved in SEARCH in polynomial complexity. These problems include,
1. bounded inappropriateness in representation,
2. multimodality,
3. different size building-blocks,
4. non-uniformly scaled building-blocks, and
5. crosstalk

Bounded deception provides a nice way to introduce order-k delineability in a problem. There-
fore, bounded deceptive problems were used to design all the different test suites except for the
last category—problems with crosstalk. The fmGA solved order-3 and order-5 deceptive prob-
lems. Section 5.2.2 presented the results on these problems. In addition to being boundedly

inappropriate in representation, these problems also have multimodality. The order-3 deceptive
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90-bit problem has around 23 local optima. The largest problem that was used for testing the
fmGA is an order-5 deceptive, 250-bit problem. It has even higher order of inappropriateness
in representation and millions of local optima. Iterative application of the fmGA solved these
problems.

In real optimization problems different building-blocks of the solution are likely to be differ-
ently scaled. Section 5.2.3, Section 5.2.4, and Section 5.2.5 presented the results for different test
problems with non-uniform scaling. The fmGA successfully solved these problems. These test
results also point out that thresholding selection is effective in minimizing the cross-competition
among building-blocks up to a certain degree.

The fmGA has also been tested against problems in which building-blocks of different size
are needed to solve them correctly. The results presented in Section 5.2.6 showed that the
fmGA can solve this kind of problems.

Problems with crosstalk are also used in the test suite. Royal road functions served this
purpose. Royal road function R2 offers difficulty by introducing covariance noise into the con-
volution kernel (Kargupta, 1995b). John Holland (Jones, 1994) recently developed Royal road
function R3 which offers different kinds of difficulty including inappropriateness of representa-
tion and crosstalk. Iterative application of the fmGA soved this problem.

Despite these successes, the fast messy GA faces a problem. The problem is regarding
its scalability to very large problems. Maintaining all the building-blocks together during the
building-block filtering process is difficult since cross-competition among different building-
blocks can eventually lead to the extinction of good building-blocks from the population. Al-
though the modified thresholding technique improved the performance, this does not solve
the problem completely. Multiple iteration of the fmGA is introduced because of this reason.
Again this improved the performance and we have been able to solve up to 250-bit problems
with millions of local optima and bounded inappropriateness in representation. However, this
problem with cross-competition has a deep root in the design of the fmGA. As we noted in the
previous chapter, although the sample space is separate, the relation and class spaces of the
fmGA are implicitly defined together. This is also a characteristic of the original messy GA.
Comparison between two relations is accomplished by relaxing the thresholding parameter and
by physically comparing two classes from different partitions. This leads to cross-competition

that can eliminate some classes from good partitions.
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The test results of this chapter can also be interpreted from the following perspectives:
e success in detecting the correct relations,

o reliability of overall success in finding the optimal solution, and

e the accuracy of the solution found.

The performance of the fmGA along each of these directions will be discussed in the following
paragraphs.

The fmGA uses the building-block filtering process to detect the correct relations. All the
test problems considered in this chapter are order-k delineable, and therefore the complexity is
polynomial, provided there exists an appropriate measure that can correctly detect the good
relations. For all the chosen test problems, there is a selective advantage of the correct relations
when evaluated in the context of the locally optimal template. Selection should be able to detect
this, and it did. Therefore, it is fair to conclude that the fmGA has been successful in finding
the right relations for the classes of test problems considered here. For different problems,
different measures may be required; however, the fundamental mechanism should work.

Although the iterative version of the fmGA with modified thresholding scheme solved prob-
lems up to 250-bit with millions of local optima, thresholding selection has limitations in its
capability to control cross-competition among building-blocks. This may lead to elimination of
some building-blocks and thereby it may reduce the reliability of the fmGA.

The solutions found for most of the test problems are the optimal solution. When the
population size was suboptimal, the fmGA showed a reasonable degradation of performance.
Therefore, the fmGA is quite successful on this ground.

The SEARCH framework proved that the class of order-k delineable problems can be solved
in polynomial sample complexity. The complexity of the original messy GA was polynomial; still
for any practical purpose scalability of the original mGA was poor because of the exponential
growth in the complexity with the order of delineability, k. The primary motivation behind the
development of the fmGA was to exploit implicit parallelism and relax the process of decision
making in relation and class spaces for reducing the complexity of search. The previous work by
Goldberg, Deb, Kargupta, and Harik (1993) hypothesized that the fmGA might be able to solve

order-k delineable problems reliably and accurately in subquadratic complexity. Although this
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appears to be true for the size of problems considered in this dissertation, elimination of cross-
competition among the building-blocks is a hurdle that needs to be crossed for materializing
that hypothesis for even larger problems. As we noted earlier the implicit implementation
of the relation comparison process is the fundamental reason behind this problem. Explicit
decomposition, either spatially or temporally, of the relation and class decision making processes
is essential to ovecome this difficulty.

The following section summarizes the main points of this chapter.

5.4 Summary

This chapter started with a note on problem difficulty from the SEARCH perspective. This is
followed by a description of experimental setup and the test results. The fast messy GA is tested
along three dimensions of problem difficulty: (1) bounded inappropriateness in representation,
(2) problem size, and (3) decision error due to sampling noise. Order k deceptive problems of-
fer bounded inappropriateness in representation. Both order-3 and order-5 bounded deceptive
problems contain millions of local optima. Apart from that, they have bounded level of inap-
propriateness in the representation. These are difficult problems. The fast messy GA performed
quite well against these problems. For large problems, multiple iterations were used, since the
fmGA was not able to maintain all the building-blocks for all subfunctions in a single iteration.
The test results for deceptive problems with mixed building-block sizes and non-uniform scaling
showed that the fmGA is capable of solving such problems. Thresholding selection seems to be
quite effective in controlling cross-competition among differently scaled building-blocks.

The fmGA is also tested against large deceptive problems. Iterative application of the
fmGA has been successful, although maintaining all the building-blocks remains a problem. As
pointed out earlier, the process of comparing relations in fmGA may be the fundamental reason
behind this.

Sampling noise can also introduce difficulty for a particular algorithm. In this work, I
restricted myself to problems with noise due to crosstalk—covariance contribution to noise kernel.
The fast messy GA is tested against the class of royal road functions, which are known to
contribute crosstalk noise in a GA (Kargupta, 1995b). The fast messy GA successfully solved
all the Royal Road functions. It is also observed that the fmGA solved R2 with a smaller
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number of function evaluations. This is because the effect of crosstalk is minimized in the
fmGA because of the thresholding selection.
The following chapter presents the results of applying the fmGA for solving the so-called

scan-to-scan correlation problem.
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Chapter 6

Application of the Fast Messy GA

to Target Tracking Problem

The issue of simultaneous tracking of targets is becoming increasingly important in military
endeavors as the air defense system is becoming increasingly vulnerable to air breathing threats,
such as bombers and air and sea-launched missiles. As the target indications (blips) are detected,
the trajectories of the corresponding blips need to be determined using a series of frames of
imaging data. As the number of targets increases, the number of possible trajectories (tracks)
increases very rapidly. The tracking problem can be categorized into two different problems—
track initiation and track continuation. In track initiation phase, three frames of imaging data
are usually considered and a track initiated from each blip in the first frame is found. In
track continuation phase, each track found by the track initiation phase is continued as new
frames of imaging data arrives. The former problem is harder than the latter, because for
N targets in each of three initial frames, there are a total of N® tracks possible and for N?
tracks there are a total of (N!)? valid solutions possible. Even though there exists a number of
pattern recognition approaches that uses some windowing techniques, they are computationally
expensive. Recently, neural networks have been used successfully in this tracking problem with
a reasonable number of evaluations (Elsley, 1990). This method uses a preprocessing technique
that reduces the number of possible tracks from n® down to about 5n or so in order to keep
the size of the neural network within manageable limits. But this drastic reduction may cause

some needed tracks to be eliminated from consideration. In this work, we use a more relaxed
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preprocessing technique that eliminates infeasible tracks and a fast messy genetic algorithms
to find correct initiation tracks.
In the remainder of this section, I first present a brief formulation of the problem, followed

by the simulation results.

6.1 Problem Formulation

Target tracking has been a problem of interest for a long time, mainly because of its importance
in the field of air defense systems. Given a large number of potential target indications (“blips”)
the job of a target-tracking system is to determine the trajectories of the corresponding blips

through a series of frames of sensory imaging data. This can be divided into two steps:
e trajectory initiation: generation of tracks from the imaging data at the initial stage.

e trajectory continuation: identifying the location of a blip in the incoming data frame, one

time step at a time.

Trajectory initiation is known to be more difficult than trajectory continuation. This is not
only because of the high computational effort required, but also because it demands a high
degree of accuracy in the performance of the tracker; otherwise the next stage of trajectory
continuation will be increasingly misleading. The sequel presents a target tracker, based on a
fast messy genetic algorithm and its performance in the track initiation problem.

The first step for addressing this problem using a messy GA is to design a suitable coding
scheme, which transforms the problem space into the messy string space. One of the interesting
features of the track initiation problem is that different candidate tracks may share common
blips. This may introduce a large number of redundant invalid strings—strings containing
tracks with many shared blips. A coding scheme may worsen the situation if it is not designed
carefully. The coding scheme used for the present work tries to minimize this problem. Every
string is comprised of a sequence of genes, where every gene corresponds to a unique blip in
the initial frame and the corresponding allele represents a candidate track initiated from that
particular blip. In order to do this in a systematic way, every blip in the initial frame is
numbered as 1,2,3--- N, each corresponding to a blip. In the present implementation, the first

gene corresponds to the number 1 blip, second gene corresponds to the number 2 blip and so on.
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After the preprocessing stage all candidate tracks initiating from each of these blips are serially
labeled. Figure 2 depicts this clearly. Every allele is a label corresponding to a candidate track,
initiated from the blip, denoted by the gene. If we denote a track corresponding to an allele by
X; then,

x; = @i(to)wi(t1) - zi(ty)

is a candidate track, generated by connecting z;(to), x;(¢1), - - -2;(ts) blips in the data frame
corresponding to tg, t; ---t; time respectively.
The objective function value of a string is measured by using the acceleration and intensity

information obtained from the imaging data:

ts N
_aZA —I—ﬁZdI —I—’yZZ Zé blip;(t), (1)) (6.1)

6(blip;(t), z:(1))

1 if blip]‘(t) = x4(1)

= 0 otherwise

where, A; is the acceleration of the ¢-th track and dI; is the intensity variation along that track;
a, § and v are constants. This expression is similar to that used elsewhere (Elsley, 1990). The
last term in equation 6.1 is a penalty term used for minimizing the sharing of blips; ¢y and ¢y
correspond to the initial and final time frame, considered for the track initiation. blip;(t) is the

j-th blip in the data frame, corresponding to the ¢-th data frame.

6.2 Preprocessing

Out of the O(N?) possible candidate tracks for each missile, many can be discarded by conven-
tional preprocessing of the data. In the present implementation, the preprocessor makes use of
a windowing technique. A spatial window is constructed around every blip in the initial frame
and all the blips in the later time frames, falling within the window are considered. All possible
tracks generated from these blips are considered to be candidate tracks for that particular blip

in the initial frame.
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Figure 6.1: Coding scheme.
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6.3 Simulation Result

6.3.1 Experiments on unclustered missiles

A simulation is run with 100 moving targets. Initial locations of the targets are randomly
generated and each of them is assigned with random initial velocity and acceleration. Intensity
of every target has a constant and a fluctuating component, which makes the problem more
difficult. Imaging data from the first 3 frames are used for initiating tracks. Figure 3 shows
the actual tracks of the targets in the first 3 data frames, with 100 blips in each frame. There
are a total of (100)? or 10° different tracks possible and a total of (100!)% or 8.7(101®) different
solutions (valid or invalid) possible. After preprocessing on the basis of the spatial windowing
technique, the search space is reduced to about 3.5(105%) alternatives.

Figure 4 shows the tracks corresponding to the best string in the initial random population.
Notice that this solution has ignored a number of blips from the second and third frame and
instead included a number of tracks with shared blips. Figure 5 shows the tracks corresponding
to the best string in generation 25. The solution is the global best and only required a total of
50,689 function evaluations, roughly 1.5(107%%) of the search space. Figure 6.5 summarizes the
important parameters of the simulation and the results.

Track continuation may be achieved in at most O(V ) evaluations. For each successive frame
at time ¢, preprocessing similar to that adopted here may be performed for correlating the blips
in the previous frame at time ¢t — 1. Messy GA or some local search technique may be used to

follow up the preprocessing in order to find the optimal track continuations.

6.3.2 Clustered missile simulations

In the previous subsection we presented the encouraging performance of messy GA tracker for
100 randomly dispersed missiles. In order to test the performance further, we made testbed
even harder. This time the missiles were initialized in such a way that they form several spatial
clusters. The light intensity of the missiles have random fluctuation as before. The performance

of the messy GA tracker for 150 and 300 clustered missiles problems are as follows:

¢ 150 clustered missile problems: Figure 6.6 shows the parameters of simulation. All
the missiles are launched in such a way that they are distributed among five spatially

different clusters. Our messy GA tracker has been able to find out correct tracks for 149
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Figure 6.4: Tracks found by fmGA at generation 25

Simulation features:
number of targets = 100
varying intensity
a=p0p=1.0

v = 2.0

Messy GA parameters:
random template
population size = 4224
splice probability = 1.0
cut probability = 0.02

Results:
e number of mistakes = 0

e function evaluations 50689

Figure 6.5: Important particulars about the messy GA tracker and simulation for 100 unclus-
tered missiles problem.

139

www.manharaa.com




Simulation features:
number of targets = 150
varying intensity
clustered problem
a=p=1.0

v=2.0

Messy GA parameters:
random template
population size = 2432
splice probability = 1.0
cut probability = 0.02

Results:
e number of mistakes = 1

e function evaluations 102140

Figure 6.6: Important particulars about the messy GA tracker and simulation for 150 clustered
missiles problem.

missiles out of 150 missiles even for a modest population size of 2432. Figure 6.7 shows

the variation of quality of solution along generations.

¢ 300 clustered missile problems: In this simulation we used 300 clustered missiles,
keeping everything else as before. Figure 6.8 shows the relevant parameters for the
simulation. Figure 6.9 shows the correct tracks of the 300 missiles. This is a really
difficult problem, considering the fact that the missile trajectories are so closely spaced.
Messy GA tracker found right tracks for 295 missiles out of 300 with a population size of

around 2900. The variation of the quality of solution along generations is given in 6.10.

6.4 Conclusions

In this section, [ have presented the results of applying fmGA for solving a target tracking

problem—a problem of high interest in the field of air defense systems. On a hundred target-
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Simulation features:
number of targets = 300
varying intensity
clustered problem
a=p=1.0

v = 2.0

Messy GA parameters:
random template

population size = 2919
splice probability = 1.
cut probability = 0.02

Results:
e number of mistakes =
e function evaluations

105,080

Figure 6.8: Important particulars about the messy GA tracker and simulation for 300 clustered
missiles problem.
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Figure 6.9: Three overlapped frames for the 300 missiles, with 5 clusters.
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144

www.manharaa.com




tracking problem, the fmGA has found all tracks correctly after a reasonable amount of evalu-

ations. This application encourages the use of fmGA in more difficult tracking problems.
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Chapter 7

Conclusions and Future Work

This chapter discusses the main conclusions of this dissertation and identifies future directions

of research. The following section presents the main conclusions.

7.1 Conclusions

This dissertation has dealt with two major aspects of blackbox optimization:

1. understanding the fundamental principles that transcend a blackbox search beyond ran-

dom enumeration and developing a general framework to quantify them

2. designing and testing blackbox optimization algorithms that share some of these funda-

mental principles

The achievements of this dissertation along each of these dimensions are discussed in the fol-

lowing sections.

7.1.1 SEARCH and its implications

The SEARCH framework decoupled BBO into three spaces, namely the relation, the class, and
the sample spaces. It realized the importance of the decision makings in both relation and
class spaces. SEARCH establishes that the role of relations in BBO is essential to surpass
the limits of random enumerative search in both qualitative and quantitative manner. The
appropriateness of relations in solving a BBO is quantified in terms of the delineation constraint.

The quantitative analysis of the decision processes in SEARCH provided bounds on success
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probability and sample complexity. I considered different blackbox algorithms and showed that
they can all be viewed from the SEARCH perspective. I also presented natural evolution in the
light of SEARCH. Some of the major computational aspects of natural evolution are studied
using the basic principles of SEARCH. This led us to an alternate perspective of evolution that
establishes the computational role of gene expression in evolution.

SEARCH provides a unified approach toward understanding the role of different participants
in solving BBO problems: (1) algorithm, (2) problem, and (3) user. It identifies the essential
components of a blackbox optimization algorithm. The bounds on sample complexity and
success probability in SEARCH are used to quantify problem difficulty in BBO. This led to
the identification of one particular class of BBO problems that can be solved in polynomial
sample complexity—the class of order-k delineable problems. Parallel evaluation of relations
from the same set of samples can be accomplished by exploiting the structural properties of
the set of relations considered by the algorithm. This observation is used to quantify so-called
implicit parallelism (Holland, 1975). SEARCH also pointed out the potential computational
benefits from considering low-order relations first in the course of search. This observation
may find some rationale behind the widely observed bottom-up process of pattern formation in
natural and artificial complex systems. An algorithm in SEARCH requires the user to define
the relation space. This appears to be one of the most critical responsibilities of the user.
Several other principles for designing the search operators are also noted.

Before I move on to the accomplishments of the second part of this thesis, let me list the

main findings of this part of the thesis and explain their implications:

1. It is possible to view blackbox optimization from a common unified perspective. The
SEARCH framework offers one possible way to do that in an ordinal, probabilistic, and

approximate sense.

2. Unless we assume relations among the members of the search space, blackbox search
cannot be any better than random search. Therefore the role of relations in BBO is

fundamental.

3. The appropriateness of relations in solving a BBO problem can be quantified in terms of
delineation, and it can be taken into account while deriving bounds on success probability

and sample complexity in BBO.
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4. Relations can be evaluated in parallel from a common set of samples by exploiting some
structural properties of the set of relations provided to the algorithm. This observation

can be used to quantify implicit parallelism.
5. Explicit bounds on success probability and sample complexity in BBO are derived.
6. Problem difficulty in BBO can be rigorously quantified using the SEARCH framework.

7. The class of order-k delineable problems can be solved with sample complexity growing

polynomially along ¢, ¢, ¢,, 1/d*, and 1/d}.

8. SEARCH offers an alternate perspective of natural evolution that establishes the compu-

tational role of gene expression in evolution.

Each of these is discussed in somewhat more detail in the following paragraphs.

The continued arrival of more new blackbox optimization algorithms has caused the need for
a common, unified perspective toward understanding BBO. The SEARCH framework developed
in this thesis took a step toward this goal by presenting an alternate perspective toward BBO in
terms of relations, classes and ordering. The foundation of SEARCH is laid on a decomposition

of BBO into the following items:
¢ searching for relations
¢ sampling
o searching for better classes defined by relations
e resolution, which exploits the delineation property of relations

This dissertation proposes that these are the fundamental processes in any probabilistic, adap-
tive sampling optimization algorithm. This proposition is also supported by explicitly consid-
ering different popular algorithms from the SEARCH perspective.

The performance of a BBO algorithm will be no better than random search when no rela-
tions are considered among the members of the search space. Every algorithm that aspires to
transcend this limit has to consider some relations defined over the search space. Unfortunately,

very few existing algorithms appear to realize the critical role of relations in blackbox search.
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Most of the existing algorithms such as simulated annealing and simple genetic algorithms de-
fine relations implicitly and combine the fundamentally different decision making in relation
and class spaces together. This leads to undesirable decision errors. Another problem with this
implicit definition of relations is that the user hardly has any idea about the relations processed
by the algorithms. Different kinds of relations may be envisioned among the members of the
search space. For example, traditionally, the genetic algorithm has been viewed to pay attention
to the relations defined by the representation. However, relations can also be defined in terms
of search operators like crossover and mutation. Therefore, exact identification of relation space
for the above-mentioned algorithms depends on the discretion of the individual. Since defining
relations that properly delineate the search space is critical for success, and since often in prac-
tice the user may be able to help in defining the appropriate relation space, it is imperative that
the algorithms explicitly define the relation space. The main conclusion is that regardless of
someone’s point of view about the dynamics of a search algorithm in the optimization domain,
emphasis on relation processing is essential, if performance of the algorithm is an issue.

Not all the relations are appropriate for a given problem and algorithm. This dissertation
provided a way to quantify the appropriateness of relations in terms of the delineation require-
ment. Relations can be defined in many ways, and representation is not the only way to do
that. However, representation may be a useful way to define problem-specific relations. It is
the primary responsibility of the user to define this space, since same set of relations may or
may not be appropriate for different problems. The delineation-ratio—the ratio of the number
of relations that properly delineate and the total number of relations in the relation space—
reflects how suitable the relation space is. An algorithm is likely to fail if this ratio is very
low. The bounds on success probability and sample complexity in SEARCH directly depends
on delineation property of relations.

The SEARCH perspective points out an interesting possibility. Relations divide the same
search space in a different manner. Therefore, relations can be evaluated in parallel using a
common sample set. This observation is used to quantify the so-called implicit parallelism
noted earlier by Holland (1975). This dissertation computed the bound on sample complexity
for sequence representation and also noted the computational benefits of implicit parallelism

for this particular representation.
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SEARCH provides us a closed-form bound on the sample complexity for solving a BBO
in terms of the number of relations considered to solve the problem, their indices, the desired
quality of solution and relations, success probabilities in detecting an appropriate relation, and
the class containing the optimal solution. The first two parameters often depend on the problem

size. The SEARCH framework decouples problem difficulty along these dimensions:
1. problem size

2. success probability in making the right decision to choose a relation that properly delin-

eates the search space
3. success probability in selecting the class containing the optimal solution
4. desired quality of relations and the solution

It is important to realize that this only presents a higher-level picture that directly interprets
different aspects of problem and algorithm to the success. Different specific characteristics
such as multimodality (Horn & Goldberg, 1995), crosstalk (Goldberg, Deb, & Thierens, 1993;
Kargupta, 1995b) of the problem and algorithm can be identified within each of these aspects.

The definition of problem difficulty and the bound on sample complexity in SEARCH can
be directly used to conclude that the class of order k& delineable problems can be solved in
polynomial sample complexity. The design and testing of fast messy GAs presented in the
second part of this thesis were inspired to solve this particular class of problems.

SEARCH also provides insights in natural evolution. This dissertation briefly reviewed a
possible mapping of the main characteristics of SEARCH into natural evolution developed in
(Kargupta, 1995b). Understanding evolution in the light of SEARCH requires paying attention
to the intracellular flow of genetic information—gene expression. An alternate computational
model of evolution is proposed that extends the traditional model of evolution (Holland, 1975)
by incorporating steps of gene expression. A direct correspondence between different compo-
nents of gene expression process and SEARCH is hypothesized. The transciptional regulatory
mechanisms are viewed as the relation space in evolution. This space also makes use of informa-
tion from the sample space—the DNA. This work clearly showed that the amino acid sequences

in proteins define equivalence classes over the DNA space. Therefore, nature appears to have a
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distinct class space. Kargupta (1995b) also noted that in eukaryotes, construction of the new
relation is possible because of the diploid chromosome.
The following section considers the achievements on the second ground of objectives of this

dissertation.

7.1.2 Design and testing of the fast messy genetic algorithms

The second qualitatively distinct part of this thesis is the design and test of fast messy GAs
initiated in Goldberg, Deb, Kargupta, and Harik (1993). Messy GAs (Deb, 1991; Goldberg,
Korb, & Deb, 1989) are a rare class of BBO algorithms that emphasize on the search for
proper relations that classify the search space in an appropriate manner. The original version
of messy GA (Deb, 1991; Goldberg, Korb, & Deb, 1989) completely lacked the benefits of
implicit parallelism. The fast messy GA makes use of a probabilistically complete initialization
and a building-block filtering process to gain some of the advantages of implicit parallelism.
The version of fmGA presented in Goldberg, Deb, Kargupta, and Harik (1993) appeared to
have some degree of sensitivity toward the choice of particular filtering schedule. A modified
technique for thresholding is introduced in this dissertation that appears to be able to maintain
the building-blocks more appropriately. Use of this modified scheme and iterative application
of fmGA minimized this problem. The fast messy GA has been tested on different kinds of
instances of the class of order-k delineable problems. Although the fmGA pays the price of
search for relations in terms of more function evaluations compared to algorithms like simple
GA on average, fmGA is likely to solve problems in which little knowledge about the good
relations defined by the representation is available.

The main conclusions of this part of the thesis are listed in the following;:

1. The scope of the simple genetic algorithm is limited, since it does not properly search for
appropriate relations. The overall decision process is very noisy, since relation, class, and

sample spaces are all combined into a single population.

2. Messy genetic algorithms emphasize searching for the right relations. However, the origi-

nal messy GA fail to exploit the benefits of implicit parallelism.
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3. The fast messy genetic algorithm eliminated the enumerative initialization process of the
messy GA by introducing a probabilistically complete initialization and a building-block

filtering process.

4. The fast messy GA is likely to solve instances of the class of order-k delineable problems

in polynomial sample complexity.

5. The fmGA is also tested against problems with crosstalk—royal road functions. Thresh-
olding selection in fmGA restricts cross-competition among strings from different parti-
tions. This seems to be effective in solving problems with crosstalk, like the Royal Road

functions.

6. Like the original messy GA, the fmGA implictly defines the relation and class spaces
together. Relation comparison is accomplished by comparing classes from different rela-
tions. This is inappropriate and may lead to cross-competition among classes from good

relations.

Each of these is discussed in somewhat more detail in the following paragraphs.

Simple GA fails to properly search for relations that properly delineate the search space.
The one point crossover highly disrupts the classes defined over loci that are not close to one
another. In other words, it assumes that the relations defined over closer loci are better with
no apparent rationale. Other crossovers like uniform crossover also do not work (Thierens &
Goldberg, 1993). One of the fundamental problems is that relation, class, and sample spaces are
all combined together, and as a result decision making in one space effects the others. Implicit
parallelism was an interesting concept noted by Holland (1975). However, the computational
benefit of implicit parallelism is outweighed by the error in decision making introduced by the
lack of explicit evaluations of relations.

Messy GAs are one among the rare class of algorithms that emphasize searching for ap-
propriate relations. Messy GAs use a competitive template and explicit enumeration of good
classes—building-blocks—to ensure correct decision making. However, explicit enumeration of
building-blocks essentially means a complete lack of the benefits of implicit parallelism.

The fast messy GA eliminated one major bottleneck of the messy GA—the enumerative

initialization. The probabilistically complete initialization and the building-block filtering pro-
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cess can be used to detect better classes from better relations without sparing the advantage
of implicit parallelism completely.

Experimental results suggest that fmGA can be used to solve the class of order-k delineable
problems in polynomial sample complexity. The fmGA has been tested on different kinds
of deceptive problems with uniform scaling, non-uniform scaling, and with building-blocks of
mixed sizes.

Kargupta (1995b) also showed that royal road function R2 offers crosstalk problem in simple
GAs. 1 briefly reviewed the definition of crosstalk presented in Kargupta (1995b). The fmGA
is also tested against royal road problems R1, R2, and R3. The fast messy GA seems to be
effective in solving problems with crosstalk. Thresholding selection that restricts comparing
classes from different partitions seems to contribute this feature.

One possible source of problem in messy GAs is the thresholding selection. The thresholding
selection tries to find the better classes and also the better relations. Thresholding parameter is
always chosen less than the string length for allowing the elimination of bad relations. However,
since the relations and classes are implicitly defined in the string population, construction of
ordering among relations influence that among the classes. Although the idea is to eliminate
bad relations, physically, this means comparing classes from different relations, which is inap-
propriate. The undesirable consequence of this is that it allows competition among classes from

good relations as well. This leads to cross-competition that may ultimately eliminate some

building-blocks.

7.2 Ramifications

There are several possible ramifications of this work. They are listed in the following:

1. Explore the strengths and weaknesses of explicit consideration of relation, class, and

sample spaces in a BBO algorithm.

2. Consideration of parametric analysis when relation or class evaluations are not indepen-

dent because of the implicit definition of the spaces.

3. Study different class and relation comparison statistics.
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4. Design new algorithms in a more constructive manner, by designing new instances of the

components of the laundry list that defines an algorithm in SEARCH.

5. Find classes of BBO problems, other than the order-k delineable problems, that can be

solved in polynomial complexity.
6. Explore the possibility of new relation construction.

7. SEARCH and evolution—Can it lead to a biologically plausible implementation of the
main lesson from SEARCH?

8. Test the fast messy GA against noisy functions.

9. Eliminate the problem with thresholding selection in the fmGA by either designing it to
solve a bounded number of building-blocks or by explicitly defining the relation and class

spaces.

The following paragraphs present a brief account of them.

The foundation of SEARCH is laid on a decomposition of the search space into relation,
class, and sample spaces. The analysis showed that the decision makings in each of these spaces
is different from the others. We also saw some plausible evidence supporting the hypothesis that
natural evolution may have such explicit decomposition of the search space. The immediate
extension of this work is to explore the strengths and weaknesses of such explicit decomposition.

The SEARCH framework took a distribution-free ordinal approach to design class and
relation comparison statistics. The comparison process for each pair in either the relations or
class space is considered independent of other pairwise comparison process. Although this is
true in SEARCH, it may not be true in algorithms like GAs. Since all three spaces are combined
together, evaluations are not independent. When they are not not independent, a parametric
approach needs to be taken. Kargupta (1995b) took a Bayesian approach to analyze decision
error for such cases. One possible ramification is to introduce parametric analysis in SEARCH
in order to have a better idea about the decision making for specific algorithms, that do not
have explicit separation of spaces.

Although almost all the blackbox search algorithms make use of some kind of class and

relation comparison statistic, the utilities of such statistics need to be constructively studied. We
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need to know what kinds of statistics are “generally” suitable for relation and class comparisons,
if such generalization is possible at all.

This work also outlined the main components that an algorithm needs in order to transcend
the limits of random enumerative search. Now that we have a listing of the different components,
development of new algorithms should be more constructive. Design of a new algorithm is now
reduced to design of new instances of one or more items from this laundry list. Designing a
new class or relation comparison statistic, designing a new ordering construction algorithm in
either of these spaces, and defining a new order to consider relations are some examples.

The class of order-£ delineable problems has been identified as solvable in polynomial sample
complexity. Other such classes of problems need to identified.

Most of the blackbox optimization algorithms rely on the user-provided source of relations,
such as representation, operators. SEARCH also analyze BBO when such a source of relation
exists. An immediate extension is to explore the possibility of using new relation construction.
When the set of relations ¥, does not have enough relations that properly delineate the search
space, BBO is destined to fail. When we do not know this beforehand, the search will be
executed anyway. However, the question is whether or not we can use the information gathered
from this bad set of relations to construct a new set of relations that is more appropriate
for the problem. One possible way to approach this may be to solve assuming some order-k
delineability and then use that information to construct a new source of relations and observe
the improvement of performance if any.

This dissertation pointed out a possible mapping between SEARCH and natural evolution.
The proposed computational model of evolution, which realizes the importance of intra-cellular
flow of information, offers some interesting possibilities. While most of the existing models of
evolutionary computation focus on debating the relative importance of mutation and crossover,
the SEARCH perspective points out that there is another important aspect of evolution that is
almost unexplored. SEARCH proposes a computational model that hypothesizes the explicit
decomposition of relation, class, and sample spaces in natural evolution. One possible extension
is to implement the lessons of SEARCH in a biologically plausible manner. Precise evaluation
of equivalence classes using an operator like transcription is possible. Construction of new
relations using a diploid chromosome and a transcription operator can also be incorporated

in a GA. Incorporating the main principles of SEARCH in a biologically plausible manner
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is indeed an immediate possibility. A new class of algorithms, named gene expression messy
GA, is currently in the stage of development and testing; it uses operators like transcription
to accomplish both relation construction and precise evaluations of equivalence classes. More
work needs to be done before presenting it to the users.

This dissertation also presented the design and testing of the fast messy GA (fmGA), in-
troduced earlier in (Goldberg, Deb, Kargupta, & Harik, 1993). There are several possible
extensions to this work. Along with others, the test results on problems with crosstalk are
reported. By definition, crosstalk introduces noise in the decision making process that can be
quantified by the covariance measure described earlier. However, the decision making process
can be made noisy by several means. Using a noisy objective function is one possibility that was
not included in the chosen test suite. The fast messy GA should be tested on such problems.

Thresholding selection introduces cross-competition among building-blocks. As I noted ear-
lier, the problem originates from the effort to do relation comparison by explicit class compari-
son. The thresholding parameter is relaxed to allow the elimination of bad relations. However,
this also introduces class-comparison from different good relations. Such cross-competition may
result in elimination of some good building-blocks. There appear to be at least two possible

extensions of the fmGA:

e Derive or estimate the bounds on the effect of such cross-competition, and then present

the fmGA as an algorithm that solves a bounded number of building-blocks at a time.

e Explicitly define the relation and class spaces. In that case, relation comparison is com-
pletely separate from class comparison, and the problem of thresholding will not exist
anymore. Note that this explicit decomposition does not necessarily has to be a spatial

decomposition. It may be possible to decompose these spaces temporally.

These two approaches define the future directions of the messy GAs.
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Appendix A

Relations, Orderings, and
Computational Complexity: A

Brief Review

Development of the SEARCH framework requires familiarity with some basic set theory. This
appendix reviews these definitions. I start from the basic definition of a set, and proceed toward
defining relations and orderings. I also review some definitions of bounds in computational

complexity.

A.0.1 Set

A set is a collection of distinguishable objects, called its members. If an object & is a member
of a set 5, we write € 5. A one-element set is called a singleton. Given two sets 57 and 99
such that for all Vx € 5, we know that x € 55, then we call 57 a subset of 55. It is denoted by

Sy C Sy. The set of all subsets of S is called the power set of S and it is denoted by 2°.

A.0.2 Relation

The SEARCH framework explores the possibility of defining relations among the members of
the domain of optimization. Therefore, it is important to understand what relations are, and

this section presents the set theoretic definitions of relation and its properties.
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A relation is a set of ordered pairs. A binary relation r on a set 5 is a subset of the
Cartesian product S x 5. For example, the less than or equal to relation on integer space is
{z,y € N : 2 < y}, where N is the set of natural numbers. A relation r is reflezive if z r z,
Yo € 5. A relation r is symmetric if x r y implies y r , Va,y € 5. A relation r is transitive if
xryandyrzimply z r 2. An equivalence relation is defined as a relation that is reflexive,

“="is an equivalence relation on the natural numbers.

symmetric, and transitive. For example,
If r is an equivalence relation on S then for € 5, the equivalence class of z is {y € 5 : z r y}.
If 5 = |, si, where every set s; is not empty and every pair s; and s; are disjoint if ¢ # j,
then we say that the sets s; partition 5. If r is an equivalence relation on .5, then the distinct

equivalence classes of r partition S. The number of distinct equivalence classes of r is called its

index. A relation r is antisymmetric if x r y and y r x imply = = ¥.

A.0.3 Partial order

An order is a particular kind of relation. For example, when the set of individuals, each with a
distinctly different age, are ranked based on their age, we call this ranking an order. A partial
order is again a special kind of order. For example, if the above set is now ranked based on the
relation is-ancester-of then all the pairs in this set cannot be ordered using this relation. This
kind of relations, in which every pair cannot be ordered, is called a partial order. The SEARCH
framework makes use of partial orders to partially rank different regions of the search space.
Therefore, this is again an important concept that we shall use frequently in this thesis.

A partial order can be defined using the set theoretic defintions introduced earlier. A relation
that is antisymmetric and transitive is a partial order, and the set on which a partial order is
defined is called a partially ordered set. For example, the relation is-descendent-of is a partial
order on the set of all males. A partial order r on 5 is called a total order if Yo,y € 5 we have

either z r y or y r z.

A.0.4 Bounds in complexity

The order of increase in the cost of running an algorithm characterizes its eficiency. In blackbox
optimization the number of samples taken from the search space is a measure of the cost of

running an algorithm. The SEARCH framework considers this measure of cost for solving BBO
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problems. Although, there exists several ways to bound the growth of cost (Cormen, Leiserson,
& Rivest, 1990) I only consider the asymptotic upper bound.

The asymptotic upper bound of a given function f({) is the set of functions, in which for
any member ¢({) there exists constants ¢ and £y such that 0 < g(€) < ¢f({) for all £ > ly. This
upper bound is denoted by O(f(£)). A function f({) is polynomially bounded if f(¢) = O((*)
for some constant k. On the other hand, f({) is exponential if f({) = O(a’), for some a # 0.

Further details about these definitions can be found elsewhere (Cormen, Leiserson, and Rivest,

1990).
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Appendix B

Simple GA: A Brief Review

Genetic Algorithms (GAs) (Holland, 1975) are a class of stochastic search algorithms. They
are motivated by the computational process in natural evolution. GAs emphasize the role
of representation in search. The simple GA (De Jong, 1975; Goldberg, 1989; Holland, 1975)
works from a population of samples defined using some representation and searches by selection,

crossover, and mutation operators.

1. Representation: Simple GA sometimes uses a sequence representation. Binary rep-
resentation and gray coding are some examples often used in GAs. A string usually
represents a unique member of the search space. Strings are sometimes called chromo-
somes. Every locus of a string is also called gene; the corresponding value at a locus of a

string is called the allele value of the gene.

2. Selection: The selection operator is responsible for detecting better regions of the search
space. The “fitness’ * of a member is its objective function value. Selection computes an
ordering among all the members of the population and gives more copies to the better
strings at the expense of less “fit” members. There exist various kinds of different tools of
selection operators (Goldberg & Deb, 1991b). Some widely used selection operators are
roulette wheel selection (Holland, 1975), tournament selection (Brindle, 1981; Goldberg,
Deb, & Korb, 1990a) and stochastic remainder selection (Booker, 1982; Brindle, 1981).
Although these selection operators are technically different from each other, all of them
share the same feature giving more copies to the better strings. The amount of selection

pressure given to the population varies among these different selection operators. However,
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/* Initialization */
t = 0; // Set the generation number to zero.
Initialize(Pop(t)); // Initialize the population at random
Evaluate(Pop(t)); // Evaluate the fitness values
Repeat
{
Selection(Pop(t)); // Select better strings
Crossover(Pop(t)); // Cross better strings to produce offspring
Mutation(Pop(t)); // Mutate strings
Evaluate(Pop(t)); // Evaluate fitness
t =1t + 1; // Increment generation counter

}

Until ( t > t,,4r Or (termination criterion TRUE) )

Figure B.1: A pseudo-code for simple GA.

in absence of any other operators, all of them lead the population to convergence in

polynomial time (Goldberg & Deb, 1991b; Miihlenbein, 992b).
3. Perturbation operators:

e Crossover : Crossover works by swapping portions between two strings. Single
point crossover (Holland, 1975), is often used in simple GA. It works by first randomly
picking a point between 0 and £. The participating strings are then split at that point,
followed by a swapping of the split halves. The working of one point crossover is
illustrated in figure B.2(left). Crossover has interesting search behavior. This leads
to many investigations that resulted in different perspective of crossover (Booker,
1993; Culberson, 1994). Different kinds of crossovers have been suggested in the
literature (Goldberg, 1989; Syswerda, 1989). Crossover is often applied with a high
probability.

¢ Mutation: Mutation randomly changes the entries of a string. Mutation is usually
treated as a low profile operator in GA because of its random nature of perturbation.

Figure B.2(right) shows an example of a point mutation operation.
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Parent Strings

11011110000010100011
[0000000011111110004 Before mutation
; 0000000000010100011
™
prings [0100010000010100011
0000000000010100011] After mutetion
(1011110011111110000

Figure B.2: (left)Single point crossover. (right) Point mutation for binary strings.
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Appendix C

An Analysis of the Thresholding

A design procedure for choosing the parameters of the building-block (BB) flitering process can

be developed by addressing the following issues:
1. tournament selection in presence of cross-competition;
2. random deletion of genes;
3. choosing the thresholding parameter.

Each of these is discussed in detail in the following sections. At the end, the overall lessons are

summarized.

C.1 Selection in the Presence of Cross-Competition

The objective of this section is to develop a simple model of cross-competition. This model will
help us choosing the number of times selection is applied before gene deletion.

In the fast messy GA (fmGA) the building-block filtering phase is divided into several
stages. Selection is applied for few generations, then genes are deleted randomly. This pro-
cess is repeated several times until the string length is in the order of the size of the building
blocks (BBs). Fach of these iterations corresponding to a different string length will be called
an episode. Thresholding divides the population into several overlapping subsets, each corre-
sponding to a unique partition. Fach of these subsets will be called a niche. These niches

are overlapping because the thresholding parameter is often less than the string length. To
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determine how long selection should be applied in a particular episode we need to know the

following things:
1. the initial distribution of strings within the niche;
2. how strings grow or become extinct because of selective pressure.

Determining the exact distribution of strings within a niche is hardly possible in absence of
knowledge about the problem itself. Since we cannot afford that luxury, we consider a simplified

model. In this model there are the following kinds of strings in a niche:

1. strings containing a building-block from a particular good partition; let us denote this
partition by r; and the group of strings containing the building-blocks in r; will be repre-

sented by the subscript .

2. strings containing a building-block from all other partitions except the partition r;; 1
assume that building-blocks from m partitions are needed to solve the problem. The
set of strings corresponding to each of these partitions except r; will be denoted by the

subscript 7. Therefore j can take m — 1 different possible values.

3. strings that contain no building blocks; these are the strings that should be eliminated

during the course of building-block filtering stage.

The proportion of building-blocks in a population will be denoted by ¢; and ¢; with the
subscripts chosen according the previous description. String containing building-blocks from
different partitions will compete with each other as long as they belong to the same threshold-
ing niche. The nature of the cross-competition among these building-blocks depends on their
contribution to the objective function value of the corresponding solution. Let us define an
interaction matriz o, to introduce the idea of cross-competition. «;; the (¢,7)—th element of a
is the expected number of copies a BB from partition ¢ makes by competing with a BB defined
over partition j. Every selection only generation within each episode is denoted by subscript ¢.

The growth equation for ¢; can be written as,

Gityr = Qi |2—qix— 2(2 — @i )G (C.1)
J#
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Figure C.1: Effect of selection in presence of cross-competition: a;; is the (4, j) — th element
of the BB interaction matrix o gives the expected number of copies a BB defined over set ¢
makes by competing with a BB defined over the another set of genes, j. (Top) a;; = a;; = 1.
(Middle) a;; = 0.95,a;; = 1.05. (Bottom) «;; = 0,a;; = 2.0. As we see slight bias towards
quick extinction of the other BB after a certain stage.
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where ¢;; denote proportion of the BB from partition ¢ within a niche at iteration ¢ of an
episode. This can be written in the differential form as,
94i 4
2= gy |1 =g — 2(2 — Q) (C.2)
ot —
JF#i
There are m such differential equations, governing the growth of m good BBs.
The strings with no BBs are assumed to loose every competition with the strings with BBs.

Therefore, the proportion of these junk strings,

_ 2
Qjunkt+1 = Qjunkz

= (unko) (C3)

In our simple model, equations C.1 and C.2 presents a simple picture of cross-competition. Let
us now illustrate there physical interpretation. Consider a simple problem in which m = 2. For
the purpose of illustration, let us assume that at the initial stage, ¢;0 = ¢;0 = 0.001. Figure
C.1 shows the variation of ¢;,; and ¢;4¢ over time for different pair of values of a;; and aj;.
The top figure shows the ideal case when «a;; = a;; = 1. In this case, the competition is even
and both the classes of strings continue to grow until their proportion converges to 0.5. Once
the junk strings are eliminated, there is not really any selective pressure and therefore their
proportion remains the same. The figure in the middle shows that if we perturb little bit by
making a;; = 0.95 and a;; = 1.05 ¢;4; eventually reduces down because of slight bias towards
¢jg,t- The bottom most figure shows the extreme situation when a;; = 0 and «a;; = 2. The two
figures from the bottom shows that ¢; and ¢;; practically remains same up to a certain stage
and there after ¢; ; falls apart. These two figures show that when there is slight bias toward
a certain BB, which could even be stochastic drift, after a certain stage one of the BBs takes
over the other BB.

Our objective is to find the number of iterations of selection only phase, after which cross-
competition starts playing a major role, resulting in eliminating some BBs. For a given inter-
action matrix, a, we should be able to solve the set of coupled differential equations at least
numerically in the most general situation. However, such information is not likely to be avail-

able. Therefore, it will probably be more prudent to explore the extreme cases and let the
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user choose a reasonable value within the bounds. The following subsections consider two such

extreme cases.

C.1.1 Cross-competition without any bias toward a particular good BB

If all the good BBs cross-compete with each other without any bias towards a particular one,
in the ideal situation, i.e. when the effect of drift is neglected a;; = 1 for every combination
of ¢+ and j. Since both ¢; and ¢;-s grow identically, they can be treated as one variable, ¢;, ;.
All the growth equations for different good BBs become identical and we can combine them to

form a differential equation,

0¢;
L ig,t [1 - m%g,t] (C4)
ot
which can be solved resulting,
1 ~1
— maq;
Gigs = |mt —— o ept
Qig to

(ig,+ asymptotically converges to 1/m; let us say a population is converged when ¢;;; = , in

order to solve for a finite convergence time. Finally we can solve for the convergence time,

1 —mg;
ey L Mg o)W (C.5)
in97t0(1 - w)

where 1/w is a factor that weighs the degree of desired convergence to the maximum possible
¢ig,o- This factor is basically used to get a practical value for ¢* from the fundamentally

asymptotic variation of ¢, ;.

C.1.2 Cross-competition in presence of strong bias

The model analyzed in this section tries to capture one of the worst case possibilities. In
this extreme case, | assume that there exists strings with a BB defined over partition k that
wins every competition with the strings with BB over other partitions. In reality this kind of

situation may arise when a particular partition is highly scaled compared to other partitions.
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In other words for all 7, a,; = 2 and a;, = 0. If that be the case, the growth equation for

g, simplifies to,

8(]ng,t

o = Ina (1= Gug.i] (C.6)

To make the situation even worse, we assume that the strings with BBs from partition ¢ looses
every cross-competition with other strings containing good BBs from other partitions.

We also assume that, there exists the other extreme kind of good BB i¢g, which looses every
cross-competition with other good BBs.

In order to keep things simple, let us assume rest of the BBs behaves identically and they
loose or win without any a priori bias, except when they compete with either k or ¢; they loose
every time they compete with one of k£ and they win every competition with one of 2-s. We
can average the proportions of such BBs and define a variable ¢;;, representing the average

proportion of such BBs. The growth equation for BB ¢ is,

8%,1&
ot

Git(1 = qie — 2(0m — 2)qj1 — 2q1,t) (C.7)

Similarly we can write,

8(]j,t
ot

41(1 = (m = 2)q50 = 2qp,¢) (C.8)

Equation C.6 can be solved giving,

Substituting this in equation C.8 we get,

eXpt_QIOg(l_qk’tO +expt Qk,tg )

9t = "1 2-m 2—m
40 9kt Tk ,t0 Fk 1o P IL 4
Finally from C.7,
eXpt—Qlogp
G = 1 1 1

it + —245,10 +Mq5,00 Tkt o P(=245,t0 +m5,10 + 5,60 )
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Figure C.2: Variation of ¢;, ¢;; and ¢, along time.

where, p = 14 2¢;4, — 2exp’ ¢j1, — MGj1o + €XP' MGjto — Uty + XD’ Qhoto

The above closed form equations look involved. Any closed form solution for the optimum
value of ¢*, at which (gx+ — ¢;+) > 6 (where § is some small value) for the first time, is likely
to be even more complicated. Therefore, it may be more practical to find the optimal time
iteratively. Figure C.2 shows the growth of each of these kinds, each having an initial proportion
of 0.001. Figure C.3 shows the values of ¢* for different values of m and ¢; o = ¢;0 = qi0; all
the t* values are computed for é = 0.01;

This section pointed out that despite the presence of thresholding, binary tournament selec-
tion can introduce cross-competition that can eliminate some good strings. Therefore, selection
only iterations within each episode cannot be continued for indefinite period. The bounding
cases described in the above sections provide some idea about the possible range of values.
For most of the experimental results presented in this thesis, the number of generations within
each of these episodes have been less than 5. The following section considers the effect of gene

deletion that takes the population from one episode to the next.
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C.2 Random Deletion of Genes

After selection is applied several times in a particular episode, denoted by subscript e, some
genes are randomly deleted. As a result the string length is reduced from Ay to Acy1). Gene
deletion can destroy a BB in a string. The probability of the survival of a BB, is
ey
_ \Nesn—k

Tet1 = T
(/\(e+1))

where k is the size of the BBs. Note that a junk string that does not contain any BB can only
remain so; gene deletion cannot generate a BB. Let us use ¢;¢. to denote the proportion of
strings with BB from partition ¢ at iteration ¢ of episode e. Similar convention will be applied for

other similar variables. This additional subscript e will be dropped wherever it is not necessary.

Gi0,e+1 = TNet1Git*e (Cg)

i 0,e+1 = MNet1it*e (C.10)

Qjunk,0,e+1 = (1 - 776—|—1) Z%,t*,e + Giunk,t* e (Cll)
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where t* represents the final selection only iteration of episode e.
The following section considers the problem of choosing the thresholding parameter in an

episode.

C.3 Choosing the Thresholding Parameter

So far we have developed an approach to decide how long selection should be applied in a
particular episode. Design of filtering schedule is not complete until we address the effect of
thresholding parameter on the niches. In this section we develop a methodology for choosing
the thresholding parameter. One possible way to do so is to minimize disproportionate growth
of building-blocks by controlling the size of their niches. Subsection C.3.1 presents a general
overview of the approach. Subsections C.3.2 C.3.3 quantify the effect of string size reduction

on the size of niches.

C.3.1 Overview

At the initial stage when the string length is close to problem length, most of the niches are
very large in size, since almost every string matches with any other string. Let us denote the
thresholding parameter of episode e by 6. As the string length is reduced by random gene
deletions, corresponding thresholding parameter is also gradually reduced. When 6. is reduced
to O(c41) some strings are either thrown out or pulled inside of a niche. This changes the initial
proportions of BBs in the (e 4 1)-th episode. The choice of Af.y = (6(c) — 0(c4q)) turns out to
be a design parameter controlling the sizes of the niches which in turn determines the success
in maintaining all the BBs in the population. Before we actually demonstrate that, let me first
briefly present an overview of the fundamental ideas of this section.

Choosing the right thresholding parameter requires analyzing the behavior of thresholding
niches under selection and gene deletion. Explicit tracking of all the niches appears very difficult
if not impossible. The approach that I take here draws its motivation from the Lagrangian style
of solving problems in fluid mechanics. I focus on the behavior of one arbitrarily chosen niche
defined with respect to an arbitrarily chosen reference string containing a BB. I analyze the
behavior of this niche as selection and gene deletion are applied. The niche is always defined

with respect to the reference string and the reference string itself gets changed because of gene
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deletion. Therefore this niche is not a fixed window to the population; rather it is a sliding
window that changes itself as the reference string is modified. Such approach is often called a
Lagrangian approach in contrast of the Fulerian approach in which the window remains fixed
in the space that we are looking at. Let us define 57 the primary thresholding niche or simply
niche of a particular reference string as the set of strings in which every member has at least 6.
common genes with the reference string. Define a secondary niche S7; of the reference string
as the set of all strings that do not compete with the reference string, but do compete with at
least one string in S7. The behavior of the reference string is viewed as an interplay among
its primary and secondary niche. The reference string can compete with any string in 57 but
not with any of Sy;. Syrr can be viewed as a boundary region outside S7. As the strings in 57
are reduced by gene deletion, some strings from Sj; may become a member of 57 and some
members of ST may join Syj.

The objective of the building-block filtering episodes is to increase the proportions of the
good BBs. Since the population size is assumed constant, this is possible only if there exist
some bad junk strings within the niches, that can be eliminated to make more copies of the
strings with BBs. After the initial stage, random deletion of genes is the only major source of
such bad strings. Even if the population contains enough junk strings, their fullest exploitation
depends on the choice of the thresholding parameter. If () is very stringent, the size of the
niche will be small and the number of niches will increase. This may result in poor growth
and ultimate extinction of some BBs. On the other hand if 6. is relaxed too much, the size
of the niche may grow excessively and thereby neutralize the role of thresholding in restricting
cross-competition. One possible way to minimize such undesirable consequences is to choose
f(c) — s in such a way that, the size of the niches neither go below a desired limit nor does it
increase beyond a limit.

To choose the right Af ) that minimizes the change in the size of the niches, we need to

compute the following things:
L. the minimum required Af ) for keeping strings which were originally within S}e) into
it

(¢)

2. the maximum allowable Af(.y beyond which strings which were originally with 5;;" would

go into S}eﬂ).
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The first item address the loss of strings from a niche. The second item considers the gain of

strings from other niches. Fach of these will be described in detail in the following sections.

C.3.2 Keeping strings within the original niche

As noted earlier, the size of a niche, created by thresholding depends on the chosen value of
thresholding parameter. If the thresholding parameter is not reduced enough after the gene
deletion, the size of a niche may become very small and may lead to extinction. In this section
I compute the minimum reduction in @, for which all the strings which were in S will also
be in Syeqr)-

The expected value of the minimum required A6 can be calculated as follows. Consider
two strings with some 6(.)+d common genes, where d may vary between 0 and §(.) = (/\(6)—0(6)).
Denote the number of genes to be randomly deleted from each of these strings by é.) =
Ae) = Ates1)- The expected value for minAf(.), which keeps two strings, having (0(5) + d)
similar genes, together within the same niche, even after the random deletion of ¢y genes from

both of them is,

. 0y 4d)\ [€or—d ~
MiN(8ey,(6r0)+d)) <(9§ ) )) (58—1’) o) (g(e) d)

| Sey—y
FE [minA#] = g
(6(e)+d) x:m%;((g,O) (2<(:>)) y:mg(g,o) (2((:)))

min(y,x)

> () (™ ) minad(e )

J=MaxX((y—(b(e)+d)+c),0)
9 = )= (Mo — (o))

minAf(z,y,j) = max(((y+2)—j—d),0)

The first summation from the left represents different ways of deleting é(.) genes from the
reference string. The dummy variable, z denotes the number of genes picked up from the
set of mutually common genes. The term on the immediate right of this summation denotes
the probability associated with each of the different ways to delete é..) genes. The next two
summations denote the work on the second string. The rightmost summation is used to quantify
the possible deletion of the same genes from both the strings.

E [minAO](é,e_I_d) can be computed for all values of d and their average value, E[minA#g]

weighted by the proportion of strings with corresponding number of similar genes tells us that
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in order to keep all the strings of Sj() within Sy11) in an average sense,
Ab;y > F [min Af] (C.12)

This provides the average value of the reduction in 6.y required for keeping strings within
the same niche in the next episode. The following section considers the possibility of gaining

new strings by choosing a relaxed value of the thresholding parameter.

C.3.3 Restricting the influx

This section describes how to compute the maximum allowable reduction in 6 that makes sure
that the strings which were not originally in 5y are not allowed to be a member of Sy41).
Equation C.12 can also be used to compute the maximum allowable reduction by letting d vary
through —1,---—§. The corresponding weighted average, say I [maxAd] gives us the other

inequality,
Aboy < EmaxA#] (C.13)

In the rest of the discussion we often refer to inequalities C.12 and C.13 together by min-
imax criterion. Figure C.4 shows the spectrum of values for every components of both the
inequalities. The abscissa denotes the string length; On any particular vertical column diamond

shaped points denote the spectrum of F [maXAH]( for d varying through —1---—¢(). The

ey td)
dotted line portion on each vertical line denotes th(e )spectrum of £ [minAH](é,(e)_l_d) for d varying
through 0,---§(). This set of data is computed for [ = 100 and a string length reduction rate
of 1.1. The initial string length, A(g) = 95 and the corresponding ) = ceil(95 x 95/100) = 91.
For every subsequent filtering stages, we compute the minimum required value of A# in order to
keep every string in Sy with (0(2») + d) genes similar to the reference string of that subpopula-
tion (for every possible d varying 0 through (A(.) —0(c))), within the subsequent S7(.41)-s. Each
of these values are connected through the dotted vertical lines. Similarly the diamond shaped
points represent the maximum allowable value of A@ in order to keep every string in Sy
with (0(5) + d) genes similar to the reference string of that subpopulation(for every possible d
varying through —1 to —§, out of the subsequent Sy4;)-s. The figure clearly shows that

the two spectrum are almost non-overlapping. The only trouble seems to come from keeping
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Figure C.4: The spectrum of values composing minimum required A@ for keeping all the
members of S}Z) into S}ZH) and the same, composing the maximum allowable A# in order to

keep the members of S}ZI) out of S}Hl).

strings which are at the boundary interface of Sy, i.e. mainly the strings with just 6 and
(0(c) — 1) genes in common with the reference string.

This minimax spectrum of values provide different choices of threshold values with different
degrees of qualitative behavior. A value from the upper region of the spectrum will tend to be
less restrictive. In other words, it will allow some strings to go in and out from the niche. On
the other hand a value from the lower spectrum is more restrictive.

The following section summarizes the results of this chapter.

C.4 Discussion

The results of the previous sections provide some idea about how to choose a building-block
filtering schedule. The models of selection under cross-competition and the minimax criterion
can be used to design a building-block filtering schedule. In this section, I briefly summarize
the results.

The simple models of growth of building-blocks in presence of cross-competition, tells us

about the approximate range for which thresholding selection should be applied in an episode.
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In general, the growth of building-blocks under selection is problem dependent; however, since
tournament selection is somewhat independent of the absolute objective function values, the
ranges of values found using these models should work for different problems. For most of the
reported experimental results on fmGA, the episode length have been restricted to less than 5.

Section C.3 provided us with some ideas about choosing the thresholding parameter. The
minimax criterion can be used to choose a relatively stringent or relaxed thresholding value.
However, determining the exact values of E[minAf] and F[maxA#] are not possible unless we
compute the distributions of the niches. Since this is not quite feasible, a more pragmatic and
approximate approach may be adopted. At the initial stage of the fmGA, when the string
length is close to problem length almost every string matches with others. As a result the size
of a niche is large. Therefore, for relatively larger value of string length, loosing strings from
the niche by adopting a relaxed strategy may be reasonable. On the other hand when the string
size reduces, niche size also decreases. When the size of a niche is smaller than a threshold, a
loosing strings should be restricted. These observations can be used to choose the thresholding
parameters, as described in the following.

First, we need to divide the filtering schedule into two parts — (1) the portion with somewhat
relaxed thresholding and, (2) the later part of the filtering process during which thresholding
should be more conservative. For all the experiments reported here, the later part begins when
the string length is reduced to 8k, where 3 is a constant and & is the size of the building-blocks.
We used 3 = 2. During the first part we choose a value from the upper region of the minimax
spectrum. In other words a relatively larger value of A# is used. In this thesis, the average
value of the upper spectrum is used as the thresholding parameter for the first part. For the
last part of the filtering schedule a more conservative value of A# should be chosen. I used the
average of the complete minimax (both upper and lower) spectrum for the second part of the
schedule.

One of the important conclusions of this analysis of thersholding is that cross-competition
among different building-blocks plays a significant role in thresholding selection. The fundamen-
tal problem originates from the implicit definition of the relation and class spaces. Comparison
of relations is tried to accomplish by comparing classes from two different relations, which is

inappropriate. For large problems, such cross-competition is likely to eliminate some of the

building-blocks.
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