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AbstractBlackbox optimization|optimization in presence of limited knowledge about the objectivefunction|has recently enjoyed a large increase in interest because of the demand from thepractitioners. This has triggered a race for new high performance algorithms for solving large,di�cult problems. Simulated annealing, genetic algorithms, tabu search are some examples.Unfortunately, each of these algorithms is creating a separate �eld in itself and their use inpractice is often guided by personal discretion rather than scienti�c reasons. The primaryreason behind this confusing situation is the lack of any comprehensive understanding aboutblackbox search. This dissertation takes a step toward clearing some of the confusion.The main objectives of this dissertation are:1. present SEARCH (Search Envisioned As Relation & Class Hierarchizing)|an alternateperspective of blackbox optimization and its quantitative analysis that lays the foundationessential for transcending the limits of random enumerative search;2. design and testing of the fast messy genetic algorithm.SEARCH is a general framework for understanding blackbox optimization in terms of rela-tions, classes and ordering. The primary motivation comes from the observation that samplingin blackbox optimization is essentially an inductive process (Michalski, 1983) and in absence ofany relation among the members of the search space, induction is no better than enumeration.The foundation of SEARCH is laid on a decomposition of BBO into relation, class, and samplespaces. An ordinal, probabilistic, and approximate framework is developed on this foundationto identify the fundamental principles in blackbox optimization, essential for transcending thelimits of random enumerative search. Bounds on success probability and sample complexityare derived. I explicitly consider speci�c blackbox algorithms like simulated annealing, geneticalgorithms and demonstrate that the fundamental computations in all of them can be capturedusing SEARCH. SEARCH also o�ers an alternate perspective of natural evolution that estab-lishes the computational role of gene expression (DNA!RNA!Protein) in evolution. Thismodel of evolutionary computation hypothesizes a possible mapping of the decomposition inrelation, class, and sample spaces of SEARCH into the transcriptional regulatory mechanisms,proteins, and DNA respectively.The second part of this dissertation starts by noting the limitations of simple GAs, whichfail to properly search for relations and makes decision making very noisy by combining relation,class, and the sample spaces. Messy genetic algorithms (Goldberg, Korb, & Deb, 1989; Deb,1991) are a rare class of algorithms that emphasize the search for relations. Despite thisstrength of messy GAs, they lacked complete bene�ts of implicit parallelism (Holland, 1975).The fast messy GA initiated by Goldberg, Deb, Kargupta, and Harik (1993) introduced someof the bene�ts of implicit parallelism in messy GA without sacri�cing its other strengths verymuch. This dissertation investigates fast messy GAs and presents test results to demonstrateits performance for order-k delineable problems.iii
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Chapter 1IntroductionSearching for a solution to any problem usually starts with understanding the problem. How-ever, as the degree of complexity of the problem increases, the chances for understanding theproblem by pure human intellect also diminish. Many practical optimization problems fall intothis category. Lack of enough domain knowledge and nonlinear interaction among the opti-mization variables of a large problem can easily bewilder man and machine. Optimizing theassembly schedule of an automobile industry and �nding an optimal layout for placing the logiccircuits in a computer chip are some examples. Blackbox optimization (BBO)|optimization inthe presence of little domain knowledge|tries to capture the characteristics of such problems.Because of its practical importance, BBO has recently drawn increased attention. A largenumber of algorithms have shown up in the literature, for example simulated annealing (Kir-patrick, Gelatt, & Vecchi, 1983), genetic algorithms (Holland, 1975), and tabu search (Glover,1989). These algorithms apparently di�er from one another on many aspects. Their perfor-mance and scope often vary widely from one problem to another. With all these new algorithms,designed based on seemingly di�erent principles, it is quite natural to ask whether any commonprinciple and common ground exist for approaching BBO.This dissertation makes an attempt to answer this question. It introduces SEARCH (SearchEnvisioned As Relation, and Class Hierarchizing)|an alternate perspective toward BBO. Itstarts by noting that blackbox search is an induction problem, i.e., a matter of guessing basedon what is known. Induction is no better than enumerative table look-up when no relationexists among the members of the search space (Mitchell, 1980; Watanabe, 1969). SEARCH1
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realizes this, and it tries to exploit the properties of di�erent relations that can be de�nedamong the members of the search space. It decomposes the search for optimal solution in BBOinto three components, searching in1. relation space2. class space3. sample spaceThis decomposition lays the foundation of the SEARCH framework. A probabilistic and ap-proximate framework is developed on this foundation to give SEARCH all its capabilities.Both qualitative and quantitative analyses of this framework are developed here. By doingthis, SEARCH makes an attempt to answer some of the following questions: Can we bound thesuccess probability in BBO? Can we quantify the role of relations in BBO? For algorithms thatuse a representation,1 can we quantify how good it is for the given problem? Can we boundthe sample complexity in blackbox optimization? Both qualitative and quantitative answersare provided. The relation between SEARCH and the PAC learning framework (Natarajan,1991; Valiant, 1984) is discussed. Popular blackbox optimization algorithms, such as simulatedannealing and genetic algorithms, are also projected in the light of SEARCH. Natural evolutioncan also be viewed as a typical BBO problem. This makes us wonder whether SEARCH tellsus anything new about the computational processes in natural evolution. The answer is yes, itdoes. An alternate model of evolutionary computation is recently proposed (Kargupta, 1995a)that, unlike most of the existing computational models of evolution, accounts for the role ofintra-cellular ow of information|the gene expression.2The SEARCH framework has many implications on the approach toward solving BBOproblems. Solving a BBO problem requires an understanding of the three participants of theprocess:1. algorithm2. problem1an auxiliary space de�ned by transforming the original search space.2DNA!RNA!Protein construction process during the transcription and translation is known as geneexpression. 2
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3. userSEARCH identi�es the di�erent components of a BBO algorithm. It also provides us with anunderstanding of problem di�culty in a quantitative manner. It answers the following questions:How does SEARCH characterize di�cult BBO problems? Is there a class of blackbox problemthat is solvable in polynomial sample complexity?3 What is the role of user in blackbox search?Again, both qualitative and quantitative arguments are used to answer these questions.The second half of this dissertation addresses the issue of designing BBO algorithms. I fo-cus on a particular class of genetic algorithms (GAs), called messy genetic algorithms (mGAs),initiated in earlier studies (Deb, 1991; Goldberg, Korb, & Deb, 1989). Unlike simple GAs(De Jong, 1975; Goldberg, 1989; Holland, 1975), messy GAs emphasize the search for appro-priate relations among the members of the search space. Since historically the mGAs camebefore the development of SEARCH, the mGAs deserve the credit for taking the right step inthe right direction. Although the original version of messy GA (Goldberg, Korb, & Deb, 1989)successfully solved bounded di�cult problems,4 it adopted an enumerative initialization of re-lations. Although the sample complexity was polynomial, it was still very expensive in termsof practical use. The fast messy GA (fmGA) was introduced by (Goldberg, Deb, Kargupta,& Harik, 1993) and this eliminated one bottleneck of mGAs. The fmGA brought some of thebene�ts of implicit parallelism (Holland, 1975) to messy GAs without sacri�cing the search forappropriate relations in the messy GA. Carefully designed experiments are also provided todemonstrate the performance of fmGA.Chapter 2 introduces the SEARCH framework. After presenting a brief review of BBO, itpresents both informal and formal description of SEARCH. Chapter 3 presents the main impli-cations of the previous chapter's results. It develops an approach toward the main participantsin a blackbox search|algorithm, problem, and user. Chapter 4 presents the design of the fastmessy GA, after briey reviewing the lessons from simple GA and messy GA. Chapter 5 �rstpresents the rationale behind the design of a test suite using our understanding of problemdi�culty and then presents the results of testing fmGA on di�erent classes of bounded di�-cult problems. Chapter 6 describes the results of applying fmGA to track missile blip targets3number of samples needed to solve a problem grows polynomialy with the size of the problem, accuracy ofthe solution, and the reliability.4a class of problems that is solvable in polynomial sample complexity in SEARCH3
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in di�erent radar frames. Finally, Chapter 8 concludes this dissertation and outlines futurerami�cations.

4
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Chapter 2SEARCH: An AlternatePerspective of BlackboxOptimizationBlackbox optimization (BBO)|a special kind of optimization in which little knowledge aboutthe problem is assumed|has recently enjoyed a large increase in interest. Many di�erent classesof blackbox search algorithms have been developed. Simulated annealing (Kirpatrick, Gelatt,& Vecchi, 1983) genetic algorithms (Holland, 1975), and tabu search (Glover, 1989) are someexamples. Despite the increasing interest for solving blackbox problems, each algorithm is a newresearch �eld in itself. Some algorithms are quite general, while some of them are for specialpurposes. Some emphasize the role of representation and some do not. The nature of thesearch operators varies widely between algorithms. Some are content with local optimizationand some aspire to global optimization. In short, there exist few common principles, littlecommon language, little cross-fertilization, and almost no understanding of the fundamentalsimilarities and di�erences between BBO algorithms in current development and usage.With all this activity and confusion it is reasonable to ask whether it is possible to createa common perspective of BBO and discuss common design principles. The answer of thischapter is yes. To support this claim, in this chapter I propose a probabilistic frameworkcalled Search Envisioned As Relation, and Class Hierarchizing (SEARCH). SEARCH presentsan alternate perspective of probabilistic adaptive sampling search in BBO. It is not intended5
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to be an exact model of one particular BBO algorithm; rather, its purpose is to capture theessential computational aspects of BBO algorithms and explore their e�ects on the bounds ine�ciency.The following sections of this chapter introduce the SEARCH framework. Section 2.1 in-troduces blackbox optimization and briey reviews some related works. Section 2.2 presentsa general informal introduction to SEARCH, and this is followed by a formal developmentin Section 2.3. Section 2.4 quanti�es the success probabilities of SEARCH. Section 2.5 spe-cializes this framework for ordinal class and relation selection processes. I compute boundson success probability and sample complexity and explore the conditions of polynomial com-plexity search in blackbox optimization. Section 2.6 discusses the correspondence between theSEARCH framework and PAC-learning (Natarajan, 1991; Valiant, 1984). This is followed bya projection of simulated annealing in the light of SEARCH in Section 2.7. Section 2.8 brieyreviews the main points of an alternate model of evolutionary computation proposed using theSEARCH framework (Kargupta, 1995a). Finally, Section 2.9 summarizes the major points ofthis chapter.2.1 BackgroundAlthough optimization has been addressed in both theory and practice for several centuries,the methodology for solving optimization problems have often followed a pattern: Given a veryspeci�c class of problems with some known properties, design an algorithm for solving thisclass. Unfortunately, because of the ever-growing list of di�erent optimization problems, theprocess of designing new problem-speci�c algorithms is unlikely to terminate. Designing algo-rithms for solving blackbox problems|optimization problems with little knowledge availableabout the problem domain|o�ers an alternate approach. By assuming little knowledge aboutthe problem, algorithms designed using this approach aspire to solve a more general class ofproblems.The purpose of this section is to introduce BBO and to review some earlier works. Section2.1.1 introduces BBO and Section 2.1.2 reviews some existing works on BBO.6
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2.1.1 Blackbox optimizationAlmost every discipline of engineering and science can make use of optimization algorithms.As a result, a large number of optimization algorithms have been developed and applied todi�erent problems. For example, smooth convex functions can be e�ciently optimized usinggradient search techniques (Papadimitriou & Steiglitz, 1982) The simplex algorithm (Dantzig,1963) performs well for a large class of linear programming problems. Dynamic programmingtechniques (Dreyfus & Law, 1977) work well when the optimization problems are stage decom-posable. Several analyses have been done for local and global optimization of real functionsthat are Lipschitz continuous with a known Lipschitz constant (T�orn & �Zilinskas, 1989; Vava-sis, 1991). This approach of operations research is characterized by a pattern: Given a classof problem, �nd an algorithm to solve it. Unfortunately, this approach of designing algorithmsthat work only for a speci�c class of problems does not ever seem to end, as the list of di�erenttypes of optimization problems continues to grow. Moreover, determining the class of problemsin which a real-world optimization problem belongs is often as di�cult as �nding a reasonablesolution for the problem. The ever-increasing computing capability has also fueled the desirefor solving large-scale problems with little prior knowledge about the objective functions.This growing demand for algorithms to solve new classes of di�cult optimization problemsand the never-ending process of designing algorithms that work for a restricted class of problemssuggest the need for an alternate approach. The applicability of the previously mentionedoptimization algorithms is very restricted, because these algorithms make assumptions aboutthe properties of the objective functions that are often too restrictive. Therefore, one steptoward designing optimization algorithms that work for a large class of problems is to reduceassumptions about the objective function. Since these algorithms make little assumption aboutthe objective function, they should be able to solve problems using as little domain knowledgeas possible. These problems would fall into the general class of blackbox optimization (BBO)problems, where little knowledge about the objective function is assumed. In this model ofoptimization, the objective function is often available as a black box, i.e., for a given x inthe feasible domain, it returns the function value �(x). No local or global information aboutthe function is assumed. Let us denote the �nite input and the output spaces by X and Y ,respectively. The general blackbox optimization problem can be formally de�ned as follows.7
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Given a blackbox that somehow computes �(x) for an input x,� : X ! Y (2.1)The objective of a maximization problem is to �nd some x� 2 X such that �(x�) � �(x) forall x 2 X . Performance of an optimization algorithm in this model depends on the informationcollected by sampling di�erent regions of the search space. The following section presents abrief review of some previous studies related to the work presented in this chapter.2.1.2 Brief review of previous worksBy de�nition, a strict blackbox search algorithm must work without any prior informationabout the structure of the objective function. Although the �eld of global optimization has a richvolume of literature, many studies are severely restricted because of their assumptions about theproperties of the objective function (Schoen, 1991), and therefore it can be questioned whetherthey can really be called BBO algorithms. The objective of this section is to present a briefaccount of some previously developed algorithms that make little use of domain informationabout the problem. First, I present a classi�cation of BBO algorithms based on whether thealgorithm is deterministic or non-deterministic. Next, I concentrate on the non-deterministicor stochastic methods. Finally, I present a brief description of some previous e�orts to relatedi�erent BBO algorithms with one another and to understand them on common grounds.Although there may be several ways to classify optimization algorithms from di�erent pointsof view (T�orn & �Zilinskas, 1989), one natural candidate is classi�cation based on the determin-istic or non-deterministic nature of the search algorithm. Several earlier e�orts (Archetti &Schoen, 1984; Dixon & Szeg�o, 1978; Gomulka, 1978) suggested classi�cation of global optimiza-tion algorithms using this approach. BBO algorithms can be similarly classi�ed as� Deterministic approaches� Stochastic approaches{ blind random search methods{ adaptive sampling search methodsEach of these approaches will be briey described in the following.8



www.manaraa.com

Deterministic enumeration of members of the search space is one method. Unfortunately, formost of the interesting optimization problems, deterministic enumeration becomes practicallyimpossible because of the growth in the search space.On the other hand, the stochastic algorithms introduce some random elements into thealgorithm and try to solve the problem by relaxing the guarantee of the deterministic enumer-ative search. This relaxed nature of stochastic search algorithms makes them more suitable forpractical applications.Blind random search (Schoen, 1991; T�orn & �Zilinskas, 1989) is probably the simplest classof algorithms within the family of stochastic BBO algorithms. The Monte Carlo and multistartalgorithms are examples of this kind of algorithm. The Monte Carlo algorithm generates randomsamples from the search space according to a �xed distribution. Multistart methods make useof local search techniques in addition to the Monte Carlo sample generation process. Althoughalgorithms of this class are simple in nature, they are likely to be suitable for the worst casewhen di�erent regions of the search space cannot be quali�ed and when evaluating a particularmember of the search space does not provide information about another member.Adaptive sampling search techniques try to exploit the information gathered from samplestaken from the search space. They try to qualify di�erent regions of the search space in termsof the �tness values of their members and use that information to decide which region toexplore next. Bayesian algorithms, clustering methods, simulated annealing (SA) and geneticalgorithms (GAs) are examples of this class of algorithms. This dissertation mainly considersthis class of algorithms.Bayesian algorithms (Betr�o, 1983) try to develop a statistical model of the objective function.These algorithms do not explicitly construct a function; instead, they use a random variableto minimize the expected deviation of the estimate from from the real global optimum. Theexpected value of the random variable is set to the best estimate of the function and the varianceof the random variable capture the uncertainty about this estimate. The problem of Bayesianalgorithms are that they are often complicated and involve fairly cumbersome computations,such as computing the inverse of the covariance matrix (T�orn & �Zilinskas, 1989).Clustering methods (Rinnooy Kan & Timmer, 1984; T�orn & �Zilinskas, 1989) use a MonteCarlo sample generation technique. Cluster analysis algorithms are used to identify local min-ima. This is followed by a local search for each local optimum. Clustering methods have been9
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found useful for many global optimization problems (Hart, 1994; T�orn & �Zilinskas, 1989). How-ever they are likely to perform poorly when the objective function is multimodal and there aremany local optima (Hart, 1994).Since the early 80s, the simulated annealing (SA) algorithms (Kirpatrick, Gelatt, & Vecchi,1983) and their variants have been used for solving blackbox problems. The natural motivationbehind SA is the statistical behavior of molecules during the crystallization process in annealing.SA considers one sample at a time and this sample represents the state of the algorithm. Aneighborhood generator is used to generate new samples. SA makes use of a probabilisticcomparison statistic (the Metropolis criterion) for deciding whether the new sample should beaccepted as the state of the algorithm. The Metropolis criterion dynamically changes alongwith a parameter known as temperature. The temperature takes a high value in the beginningand gradually decreases according to a chosen cooling schedule. The acceptance probability isoften very high in the beginning, when the temperature is high. The acceptance probabilitydecreases as the temperature reduces. SA has a proof for asymptotic convergence to the optimalsolution (Kirpatrick, Gelatt, & Vecchi, 1983) SA has been applied to a wide range of blackboxproblems. Many of them reported very promising results. However, in the recent past severalnegative results have also come out (Dueck & Scheuer, 1988; Ferreira & �Zerovnik, 1993).Genetic algorithms (GAs) (De Jong, 1975; Goldberg, 1989; Holland, 1975), evolutionaryprogramming (Fogel, Owens, & Walsh, 1966), and evolutionary strategies (Rechenberg, 1973)are also getting increasing attentions for dealing with global optimization in blackbox problems.Design of the simple genetic algorithm (GA) is motivated by natural evolution. Unlike the SA,it emphasizes the role of representation and the interaction between the representation andperturbation operators. GAs use the representation to implicitly divide the search space intoseveral non-overlapping classes often called schemata (Holland, 1975). Unlike SAs, GAs workfrom a population of samples, with each sample often represented as sequences. This populationof sequences is used to evaluate di�erent schemata. New samples are generated by crossover andmutation operators. Crossover also implicitly combines the better schemata while generatingnew samples. GAs have been successfully applied to di�erent classes of problems (Goldberg,1989). However, the simple GA su�ers from several limitations. Although the simple GArealizes the role of representation that induces relations among members of the search space,the simple GA does not really search for appropriate relations. Moreover, the evaluation of10
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schemata is also very noisy in the simple GA. These issues will be revisited and elaborated inChapter 4.With all these di�erent BBO algorithms in our arsenal, it is quite natural to ask whetherthey can be studied on common grounds using common principles. Several previous e�orts havebeen made to address this question. Although Holland's (1975) framework for adaptive searchwas primarily motivated by evolutionary computation, the underlying concepts of search basedon schema processing and decision making are fundamental issues that are equally relevant inthe context of any other adaptive BBO algorithms. In fact, Holland's work (1975) is the rootof the current thesis. Davis (1987) made an e�ort to put literature on SAs and GAs under acommon title. Unfortunately, this book did not make any direct e�ort to link them; rather, itsimply discussed them separately. Sirag and Weisser (1987) combined several genetic operatorsinto a uni�ed thermodynamic operator and used it to solve traveling salesperson problems.However, this paper did not study the fundamental similarities and di�erences between SAs andGAs. Goldberg (1990) addressed this issue. He presented a common ground to understand thee�ects of the di�erent operators of SAs and GAs. He also proposed the Boltzmann tournamentselection operator, which attempts to achieve Boltzmann distribution over the population.Mahfoud and Goldberg (1992) introduced a parallel genetic version of simulated annealing calledparallel recombinative simulated annealing. This algorithm attempted to harness the strengthsof both SAs and GAs. Recently Rudolph (1994) developed a Markov chain formulation of SAsand GAs for analyzing their similarities and di�erences. Jones and Stuckman (1992) made aninteresting e�ort to relate GAs with Bayesian approaches to global optimization. They notedthe similarities and di�erences between these two approaches and concluded that they sharemany common grounds. They also developed hybrid algorithms that try to harness the strengthsof both approaches. Recently Jones (1995) proposed a framework to study the correspondencebetween evolutionary algorithms and heuristic state space search of graph theory. In thisapproach the search domain of the objective function is viewed as a directed, labeled graph.Jones and Forrest (1995) also proposed the �tness-distance-correlation measure for quantifyingsearch di�culty and applied this measure to several classes of objective functions.Unfortunately, very few of the previous works actually made a quantitative e�ort to studythe computational capabilities and limitations of BBO. Little attention has been paid to the roleof relations in BBO, which is essential for transcending the limits of random enumerative search.11
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We still lack any common framework that describes these di�erent algorithms in terms of thebasic concepts of theory of computation. The SEARCH framework, which will be introducedin the remainder of this chapter, attempts to do that. The development of SEARCH willrequire some familiarity with concepts of set theory and computational complexity. Readersnot familiar with this �eld should read Appendix A or a standard textbook such as Cormen,Leiserson, and Rivest (1990).2.2 SEARCH: An Informal PictureSEARCH presents an alternate picture of blackbox optimization in terms of relations andclasses that can be constructed among the members of the search space. SEARCH is also aformal framework that helps us quantify di�erent aspects of BBO, such as sample complexity,problem di�culty, and many more. However, the fundamental ideas are quite simple and canbe understood without introducing any formal terms. The purpose of this section is to providesuch an introduction. Section 2.2.1 presents a brief motivation for this section. Section 2.2.2considers an example optimization problem and illustrates the underlying concepts in SEARCH.2.2.1 MotivationSome existing BBO algorithms try to �nd the optimal solution by directly searching the originaldomain of optimization variables. Samples are often used to estimate the best solution of thesearch space. In these approaches, a BBO algorithm always searches for a better solutioncompared to the current best solution. It takes one or more samples and then decides how tochoose the next sample. Although the task is certainly non-trivial, the approach of �nding thebest solution by iteratively updating the best estimate has a fundamental problem. Samplingone particular point from the search domain does not necessarily tell us anything about anotherpoint. When a BBO algorithm makes a decision to sample another member from the domain,it is performing induction|the process of hypothesizing the premise from the consequences(Michalski, 1983). This is because we are �rst observing the objective function values for themembers of the sample set and then trying to determine whether an unknown point shouldhave a higher or lower objective function value. In other words, it is guessing; it is a provenfact that induction is impossible when no relation exists between the members (Mitchell, 1980;12
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Figure 2.1: Classi�cation of the search space using relations.Watanabe, 1969). If no prior relation is assumed between them, there is little reason to chooseone member over others, and the blackbox search will be no better than the random searchunless the algorithm assumes and exploits some relations among the members of the searchdomain.If assuming and exploiting relations among the members of a search space is essential, thenit will be wise to isolate this possibility, study it, and see how it can be used to the fullest. TheSEARCH framework does that. Recall that SEARCH stands for Search Envisioned As Relationand Class Hierarchizing. Searching for better relations and better classes are the primary frontsemphasized in SEARCH. Relations classify the search space into di�erent regions. Figure 2.1presents a schematic diagram of the search spaces divided into a set of non-overlapping classesafter a relation is de�ned. Some relations classify the search space in such a way that it isrelatively easier to detect the class containing the optimal solution. SEARCH tries to establishsuch relations among the members of the search space. Instead of directly searching for thebest solution from the beginning, SEARCH tries to �nd these relations and then use them tolocate the classes containing the optimal solution. Although the scope of this framework is quitegeneral, in the following section I consider a simple optimization problem represented using abinary sequence space to explain the main concepts in simple terms.13
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Table 2.1: A sample set.x �(x)1000 11001 21010 01011 11110 32.2.2 An illustrationConsider an unconstrained optimization problem represented using four bits. Table 2.1 shows a�ve-member sample set; out task is to determine the optimal solution. All we know is that thissample set and the search domain de�ned by the binary representation are discrete. With noother information about the objective function available, this task seems to be very di�cult. Infact, many established algorithms of operations research such as simplex, ellipsoid, and convexprogramming, will be clueless when faced with this problem. Unfortunately, we need to dealwith it and this is what blackbox optimization is all about.A more optimistic picture may be developed by carefully considering of the samples andthen guessing possible relations among them. We can try to correlate the regularities among thebinary representation of the members with the grades in objective function values by makinginductive hypotheses. For example, strings 1001 and 1000 di�er only at the rightmost bitposition, and the objective function value of 1001 is greater than that of 1000 by 1. Similarly,the objective function value of 1011 is greater than that of 1010 by the same amount, 1. Thesetwo observations may lead us to hypothesize that having 1 in the rightmost bit position maylead to higher objective function values. Another possible hypothesis may be that a 0 in thesecond bit position from the left and 1 in the rightmost position may be the features of the goodsolutions in this representation, since this is a feature of both 1001 and 1011. However, the lastmember of the sample set 1110 has a much higher objective function value. This may help usin eliminating our second hypothesis that a 0 in the second from left position is associated withbetter solutions. Among all these hypotheses, one possibility is that three consecutive 1s in the�rst three bit positions from the left are good features, since 1110 has a higher objective functionvalue; 1 in the rightmost position also results in increasing objective function value. These two14



www.manaraa.com

Table 2.2: A function in 4-bit representation.x �(x)0000 2.50001 30010 10100 11000 10011 20101 21001 20110 01010 01100 00111 11011 11101 11110 31111 4hypotheses suggest that the string 1111 is the optimal solution. This turns out to be the correctsolution of the problem. Table 2.2 de�nes the objective function. This function is constructedin such a way that in the chosen representation, it can be decomposed into two subproblems:(1) the �rst three bit positions from the left together and (2) the rightmost bit position. Thesearch for the optimal solution can therefore be viewed as the search for appropriate relationsor regularities among the members of the sample set. This is the fundamental concept inSEARCH.One way to talk about these regularities is through using a notation of patterns that may bede�ned using equivalence relations and classes. The four-bit representation used in our examplede�nes 24 = 16 relations corresponding to the di�erent partitions. Every partition de�nes aunique equivalence relation in this space of binary strings. For example, ###f (where f standsfor a �xed bit that matches for equivalence) is an equivalence relation de�ned over the last bitposition. Relation ###f divides the search space into two classes, ###1 and ###0.Now that we have a precise way to talk about the regularities among the members of thesample set, we need to qualify these regularities in terms of the objective function values. Inother words, we want to be able to say that a particular class is better than some other class in15
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Table 2.3: Members of class ###1 and ###0 and the class average statistics.###1 ###0x �(x) x �(x)1111 4.0 1110 3.01101 1.0 1100 0.01011 1.0 1010 0.00111 1.0 0110 0.01001 2.0 1000 1.00101 2.0 0100 1.00011 2.0 0010 1.00001 3.0 0000 2.5Avg. 2.0 Avg. 1.0625Table 2.4: Average objective function values of the classes in fff#.Class Average111# 3.5000# 2.75100# 1.5001# 1.5010# 1.5110# 0.5101# 0.5011# 0.5a certain sense. Two classes may be compared by �rst de�ning a statistic over them. Table 2.3shows the members of the two classes ###1 and ###0. Note that every member of ###1has a higher objective function value compared to the corresponding member of ###0. Thisis just one way to compare the two classes. Comparing the class average objective functionvalue may be a di�erent way to look at them. Table 2.3 also shows the class average statisticfor these two classes. Since ###1 contains the optimal solution, the relation ###f classi�esthe search space in such a way that correct decision making is possible with any one of thestatistics just described. Similarly, the relation fff# also identi�es the class 111# to be thebetter class using the class average statistic. Table 2.4 shows the class average statistic forall the classes de�ned by relation fff# and, as we see, the class 111# is ranked highest. Onthe other hand, some relations such as f### and #f## do not correctly identify the class16
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Table 2.5: Class average statistics of the classes de�ned by relations f### and #f##.f### #f##Class Avg. Class Avg.0### 1.5625 #0## 1.56251### 1.5 #1## 1.5containing 1111 as the best class, using the same class average statistic. Table 2.5 shows theclass average statistics for classes de�ned by these two relations, and it shows that the averagestatistics for 0### and #0## are greater than those of 1### and #1## respectively. For agiven statistic for class comparison, some relations may classify the search space in such a waythat the class containing the optimal solution is ranked higher than other classes; therefore,correct decision making in choosing the right class is possible. These relations are appropriatefor classifying the search space from the optimization perspective. This is an important conceptin SEARCH and therefore, we shall give it a name. If a relation ranks the class containing theoptimal solution in such a way that correct decision making is possible, then we say that thisrelation properly delineates the search space. If a relation does not do that, it does not properlydelineate the search space; One may also say that a relation does not satisfy the delineationrequirement.As I noted earlier, relations do not necessarily have to come from representation. Neigh-borhood generation heuristics and operators can also be used to de�ne relations. For example,consider the k-opt algorithm (Lin & Kernighan, 1973) used for solving the traveling salespersonproblem. This algorithm makes use of a k-change neighborhood generation heuristic that gen-erates a set of neighbors of a member of the search space and keep the member that is locallyoptimal with respect to the k-change neighbors. In this algorithm the relation among the searchspace members can be de�ned by this k-change neighborhood generation heuristic. The simu-lated annealing (SA) is another class of algorithm often used for solving blackbox optimizationproblems. Again, in SA, the neighborhood generation operator can be viewed as a source ofrelations. Since relations can be introduced through several means, the SEARCH frameworkconsiders a set of relations as an abstract entity, independent of their sources. Among themembers of this set of relations, some relations are useful, since they properly delineate thesearch space and thereby facilitate correct decision making; the rest of the relations do not and17
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Table 2.6: Class average statistics of the classes de�ned by relations ###f and #f##,computed based on the sample set.###f ##f#Class Avg. Class Avg.###1 1.5 ##0# 1.5###0 1.33 ##1# 1.33Table 2.7: Class average statistics of the classes de�ned by relations fff#, computed basedon the sample set. �f#Class Avg.111# 3.0100# 1.5101# 0.5therefore, they are not as useful from the perspective of optimization. The smaller the set ofrelations, the more likely it is that these relations will fail to properly delineate for di�erentkinds of problems. A particular set of relations may be suitable to properly delineate a certainkind of search space, although it may fail to do so for other problems. Therefore, the \richer"the set of relations, the more likely it is that some of them will properly satisfy the delineationrequirement. The term \richer" needs some explanation. Simply increasing the size of the set ofrelations introduces a di�erent problem. For every BBO, an algorithm has to determine whichrelations satisfy the delineation requirement. Therefore, it is a search problem. The largerthe set of relations considered by the algorithm, the more expensive the search for appropriaterelations becomes. This is clearly a trade-o� and the term \richer" reects a quali�cation ofthe ease to �nd a relation that properly delineates the search space. One way to quantify thisqualitative term is to measure the ratio of the relations that properly delineate the search spaceand all possible relations under consideration of the algorithm. This ratio will be called thedelineation-ratio of the problem with respect to the chosen class comparison statistic and the setof relations. SEARCH realizes the importance for searching relations that properly delineate,and it makes an explicit attempt to capture its e�ect on the overall success of the algorithm.18
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In a sampling-based algorithm, the classes can only be compared based on a small subsetof the set of all members of these classes. Therefore, the detection of better relations andclasses has to depend on the quality of sampling; decision error is possible unless the samplingis extensive enough. First of all, SEARCH tries to construct an approximate ranking amongthe classes de�ned by a relation. Let us illustrate this using the sample set given in Table 2.1for our example problem. Table 2.6 shows the class average statistic for the classes de�nedby relations ###f and ##f# based on the sample set shown in 2.1. Based on the limitedinformation from the sample set relations ###f and ##f#, we shall rank the classes ###1and ##0# highest respectively. Since we already know that 1111 is the optimal solution ofthis problem, clearly relation ##f# is providing a ranking that can lead to failure in �ndingthe optimal solution. As we saw earlier, relation ##f# is one of those relations that do notsatisfy the delineation requirement. However, in absence of any prior information, determiningwhich relation produces a correct ranking is a stochastic decision-making problem. One possibleway is to de�ne a measure that can be used to compare di�erent relations, just like the classcomparison statistic. For example, one such measure may favor those relations that rankclasses in such a way that the top-ranked class is much \better" than the second-best classin the sense of the class comparison statistic; let us illustrate this statistic using our exampleproblem. Consider the relations ##f# and fff# and their sample class average statisticshown in Tables 2.6 and 2.7, respectively. Note that table 2.7 shows only three classes since noinformation about the other classes can be gathered from the given sample set. The di�erencebetween the class average statistics of ##1# and ##0# is 0:17. Similarly the di�erencebetween the class average statistics of 111# and 100# is 1:5. Since 1:5 > 0:17 according to thisrelation comparison statistic, fff# is better than ##f#. Di�erent measures for comparingrelations can be de�ned. SEARCH recognizes the importance of both correct ranking of classesand correct choice of relations and considers their e�ect on the overall success probability of analgorithm.Once the classes are ranked and the corresponding relation is hypothesized to be one thatproperly delineates the search space with high con�dence, then the higher-ranked classes areselected for future consideration and the low-ranked classes are discarded. However, detectionsof appropriate relations and selection of better classes are not alone su�cient. This informationabout the classes that are concluded to be promising and those that are discarded from further19
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consideration needs to be exploited during future evaluation of new relations. Let us illustratethis idea using our example problem. Let us say that we have identi�ed that relations fff#and ###f properly delineate the search space with Mi = 2 and Mi = 1, respectively. Thetop two ranked classes in fff# are identi�ed as 111# and 100#. Similarly let the top rankedclass in relation ###f be ###1. Now let us consider the evaluation of the relation ffff .This relation divides the space into 16 singleton classes, in which each of the classes is basicallya ground member of the search space. However, the class ranking information from relationsfff# and ###f can be used to conclude that for relation ffff only the following classesneed to be considered: 111#\###1 and 100#\###1. In other words, although the relationffff actually de�nes 16 singleton classes, the only two classes that need to be considered are1111 and 1001, and the rest of the classes can be neglected. Note that this pruning of classesis permissible only as long as our hypothesis about the decomposiblity of relation ffff intorelations fff# and ###f is correct. This process of exploiting the information about theclasses de�ned by some relations, for pruning out some classes from a di�erent relation bycomputing set intersections, plays an important role in SEARCH. SEARCH gives this processa particular name|resolution.Resolution can be implemented in several ways. For example, in SA, as the algorithmmoves from one state to another, some features of the previous state may remain unchanged,and therefore, the new state may be a combination of some old and new features. In SAs theresolution of class features is implicitly distributed over time. In genetic algorithms (GAs), thecrossover operator directly combines the features of parent strings to produce o�springs. In adecision tree such as ID3 (Quinlan, 1986), the individual features are sequentially considered,and gradually, a hierarchical decision tree is developed that can be used for classi�cation. Thehierarchy of features in a decision tree describes how features should be combined with one an-other and de�nes the resolution process in SEARCH. As we see, resolution can be implementedin several ways. However, since the underlying process is very similar to set intersection, quan-titative analysis of SEARCH will treat it as an abstract intersection operation. Therefore, inSEARCH, resolution computes set intersection among di�erent classes.The ultimate objective of a BBO algorithm is to �nd the optimal solution. BBO algorithmsthat directly search for optimal solution in the sample by updating their best estimate returnthe answer found directly from the sample space. However, in SEARCH, it is quite di�erent.20
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0  1  1  0Figure 2.2: Decomposition of blackbox optimization in SEARCH.SEARCH �nds the solution from the class space. When a singleton class is generated thatranks highest, SEARCH returns that class as the optimal solution. Singleton classes can eitherbe produced by resolution when there is some degree of decomposibility or by the relationsthemselves in the worst possible case.The above discussion presented an informal account of the di�erent aspects of the SEARCHframework. The remaining part of this section recapitulates the main points.SEARCH explicitly reduces BBO into searching along three dimensions: (1) relation space,(2) class space, and (3) sample space. Figure 2.2 illustrates this decomposition for a portion ofthe 4-bit example problem. The relation space contains the relations that are under considera-tion of an algorithm for classifying the search space. Some of them properly delineate the searchspace, and some of them do not. Therefore, the algorithm must search for the former kind ofrelation from the relation space. The class space contains the di�erent set of classes de�ned byeach of these relations. SEARCH tries to construct an ordering among the classes belongingto a particular relation for detecting the class that contains the optimal solution. This searchfor better classes constitutes another dimension of SEARCH. The sample space contains thesample set that is used to evaluate the classes. Since samples are used to evaluate speci�cclasses, the sample generation process needs to be controlled. Moreover, the same sample setcan be used to evaluate the classes belonging to di�erent equivalence relations. This is simplybecause di�erent relations divide the same search space in di�erent ways. Therefore, the sameset of samples just needs to be arranged di�erently for evaluating di�erent relations. This hasa close relation with the so-called implicit parallelism in GAs, noted by Holland (1975). Thiswill be elaborated further in later chapters. The resolution computes the intersection classes of21



www.manaraa.com

SOLUTION

BAD  RELATIONS

RELATION  EVALUATION

GOOD  RELATIONS

RELATIONS

 CLASSES

SAMPLES     CLASS  EVALUATION

BAD  CLASSESGOOD  CLASSES

RESOLUTION

Figure 2.3: Di�erent components of SEARCH framework.two given classes and thereby exploits any possible decomposibility among the relations. Theclass space returns the optimal solution, which is a singleton class.Figure 2.3 shows a process-oriented picture of SEARCH. Relations, classes, and samplesare viewed as separate entities. Relations are evaluated based on how they classify the searchspace. Classes are evaluated using samples taken from the domain of optimization. Resolutioneliminates irrelevant classes from the set of all classes de�ned by a relation. Good relationsare preserved and bad relations are discarded. Similarly, in the class space, good classes areselected and bad ones are rejected. The optimal solution is returned from the class space.This informal presentation has primed the pump with a concrete, if somewhat loose, ex-position of the basic ideas in SEARCH. The use of a bit-string example might make it seemas though the framework to be developed is limited to binary representation or some speci�calgorithm. This is not the case. I will consider di�erent algorithms with di�erent kinds ofsource of relations in the due course, which will convince the reader about the generality of theunderlying concepts. I now turn to a formal development of a general framework|SEARCH.2.3 SEARCH: The Formal DevelopmentThe previous section laid out the SEARCH perspective of BBO as a process of searching forbetter relations and classes. The presentation was informal and designed mainly for conveyingthe major concepts. Moreover, the ideas were conveyed mostly using an example problem insequence representation. However, they can be rigorously cast on a more general ground, which22
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is the objective of this section. First, Section 2.3.1 presents a formal overview of di�erent aspectsof SEARCH. Unlike the previous section, the overview in this section will be given using theformal symbols that will set the stage for the subsequent analysis of SEARCH. Section 2.3.2presents a detailed description of the di�erent components of SEARCH and formalizes thede�nitions of di�erent terms introduced earlier. It �rst addresses the classi�cation, ordering,and selection of classes. Next, it considers the process of selecting better relations. Finally, theresolution process is described.2.3.1 OverviewHere we overview the major components of SEARCH:1. classi�cation of the search space using a relation2. sampling3. evaluation, ordering, and selection of better classes4. evaluation, ordering, and selection of better relations5. resolutionEach component is discussed in more detail in the following paragraphs. To do so requires somenotation that we shall use throughout the remainder of the chapter. A relation is denoted byri, where i is the index of the set of all relations, 	r, under consideration of the algorithm.Let Ci be the collection of subsets, created by relation ri. The set of relations Sr actuallyused by an algorithm to solve the given BBO is a subset of 	r . Denote the members of Ciby C1;i; C2;i � � �CNi;i, where the cardinality of the class Ci is kCik = Ni. Therefore, Ci is acollection of classes.Once the relation is used to construct Ci the next step is to evaluate the classes in Ci.To do that we need samples from the domain of optimization. A perturbation operator Pis de�ned as an operator that generates new samples. This operator can be either a randomsample generator or a smarter one that exploits information from the relation, class, and samplememory.The next step is to construct an ordering among the classes in Ci. To do so, we need a wayto compare any pair of classes. A statistic T can be computed for each of the classes, and they23
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may be compared on this basis. This statistic will be called a class comparison statistic. Thisclass comparison statistic can be used for computing a tentative ranking among the classes inCi. For certain choices of T , some classes may not be compared with other classes. This meansthat sometimes a total order may not be constructed. Therefore, in general, a statistic T can beused to construct a partial order on Ci. Let us denote this partially ordered collection by Ci[ ].Once the ordering is constructed, the next goal is to select some 1 � Mi � kCik top rankedclasses from Ci[ ]. Mi represents the total number of top ranked classes that will be selectedfor future considerations. The exact choice of Mi depends on the decision error probability inchoosing an appropriate relation and ordering construction among the classes. For example, ifsampling is insu�cient, the ordering of classes cannot be relied upon with high con�dence, anddrastic elimination of classes may not be appropriate. Therefore, a relatively larger value of Mimay be used. These Mi classes constitute the updated version of the class search space.Next, this ordering among the classes is used to evaluate the relation ri itself. Di�erentkinds of statistics can be used to compare relations with one another. I denote this relationcomparison statistic by Tr and call it a relation comparison statistic. This statistic for relationri is now computed. The set of all relations currently under consideration is ordered based onthis statistic. Note that, again, this ordering does not have to be a total ordering. The top Mrrelations are kept for future consideration and the rest are discarded, in a manner very similarto what we did for the classes.Not all the classes de�ned by a relation need to be considered. As more and more relationsare evaluated, the information gathered may be used to prune out di�erent classes beforeevaluating a new relation. Let r0 be a relation that is logically equivalent to r1 ^ r2, where r1and r2 are two di�erent relations; the sign ^ denotes logical AND operation. If either of r1 orr2 was earlier found to properly delineate the search space with certain value of Mi, then theinformation about the classes that are found to be bad earlier can be used to eliminate someclasses in r0 from further consideration. Blackbox algorithms often implement a resolution-likeprocess to take advantage of any such possible decomposibility. If the chosen relation ri canbe decomposed into a collection of di�erent relations, denoted by [krk, then resolution caneliminate bad classes using the information collected from possible earlier evaluations of somerelations in [krk. 24
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Repeated iterations of the above steps result in gradual focusing into those regions of thesearch space which look better using the chosen class and relation comparison statistics. Theset of all these relations ri; ri+1; : : : used to solve the problem is denoted by Sr. Whether or notthe algorithm approaches the globally optimal solution, depends on success in �nding properrelations, better classes, and su�cient sampling.The following section presents a detailed formal description of the di�erent aspects of theSEARCH framework.2.3.2 SEARCH: The detailed pictureThe objective of this section is to present a quantitative picture of SEARCH and formalizethe de�nitions introduced earlier. The de�nition of a better relation requires de�ning what wemean by better classes. Therefore, the decision making in the class space is considered �rst, inSection 2.3.2.1. Section 2.3.2.2 considers the class selection process. This is followed by Section2.3.2.3 that discusses the relation search. Finally, Section 2.3.2.4 presents the resolution processof SEARCH.2.3.2.1 Classi�cation and ordering of classesThis section considers the decision-making process among the classes. Classi�cation of thesearch space requires de�ning relations. A relation can be de�ned using di�erent sources, suchas operators and representation. In this section I assume no speci�c source of relations andsimply consider 	r , a set of relations, as an abstract entity provided to the search process.However, I continue to give illustrative examples whenever required, using relations de�ned bysequence representation.Let Ci be the collection of classes created by some relation ri. Denote the members of Ciby C1;i; C2;i; : : :CNi;i, where kCik = Ni. Once a relation ri is used to de�ne Ci, the collection ofclasses, each of its members needs to be evaluated �rst. Since we are interested in the relative\goodness" of the classes with an ultimate goal to pick up some and reject the rest, a statisticthat compares any two classes can serve our purpose. If T is the class comparison statisticused to compare any two subsets Cj;i and Ck;i, then given any two subsets, there must existan algorithm � that returns the resulting order among the subsets when compared on the basisof T . It may also be possible that the two classes cannot be compared based on T . The25
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Table 2.8: Di�erent class comparison statistics for the classes in ff##.Class Average Min Max11## 2.0 0 4.010## 1.0 0 2.001## 1.0 0 2.000## 2.125 1.0 3.0
01## 10##

11## 01## 00## 10##

00##

11##Figure 2.5: Ordering among classes for di�erent class comparison statistics: (left) Comparisonby average of objective function value. (right) C2;i is less than C1;i if the minimum objectivefunction value of C1;i is greater than maximum value of C2;i. Table 2.8 presents the correspond-ing statistic measures of the classes considered here. This �gure illustrates that the orderingamong the classes can change depending upon the choice of the particular statistic.descriptions of these classes using the sample sets by C1;i; C2;i; : : :CNi;i by Ĉ1;i; Ĉ2;i; : : :ĈNi;i.Let Ci[ ] be the ordering of classes from relation i. Denote the class at rank b from the bottomof this ordering by C[b];i. This means the top ranked class in this ordering is denoted by C[Ni];i.he partial ordering constructed using the sample estimates may be di�erent from the actualordering. Figure 2.4 (right) shows that the partial ordering constructed from sample estimatesmay di�er from the actual ordering.2.3.2.2 Selection of better classesOnce the classes are partially ordered based on �T , the next immediate objective is to selectMi \top" subsets. Since Ci[ ] is a partial order, the notion of \top" needs to be properlyde�ned. This is an implementation-speci�c issue. One possible way to de�ne this may be27
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based on the depth of a subset in the Hasse diagram. For the current purpose, I assume thatthere exists a subroutine TOP(Ci[ ];Mi) which returns the set of \top" Mi subsets from thecollection Ci[ ]. In our 4-bit example problem, with class objective function value average asthe comparison statistic (as shown in Figure 2.5 (left)), TOP(Ci[ ]; 2) will return the top twoclasses, f00##; 11##g. Denote the particular subset that contains x�|the globally optimalsolution|by C�;i. If we denote the ordered collection of sample sets Ĉ1;i; Ĉ2;i; : : : ĈNi;i by Ĉi[ ],then we would like Ĉ�;i to be one among the collection of classes returned by TOP(Ĉi[ ];Mi).Unfortunately, this is very unlikely, unless C�;i itself is not within TOP(Ci[ ];Mi). This sets thestage for introducing the notion of inherently better or worse relations with respect to a givenproblem, a class comparison statistic, and memory size. This is considered in the followingsection.2.3.2.3 Selection of appropriate relations: The delineation propertyA relation is not appropriate with respect to the chosen class comparison statistic and the BBOproblem if the class containing the optimal solution is not one among some top-ranked classes,ordered based on this statistic. If the class C�;i is not among the topMi classes, the algorithm isnot likely to succeed (neglecting any chance that may rank Ĉ�;i higher than its actual ranking).Let us quantify this requirement of a relation to be appropriate by a function DC(ri; T ;Mi).This function returns a one if C�;i 2 TOP(Ci[ ];Mi); otherwise, it returns a zero. This will bedenoted by DC() in short (DC stands for Delineation Constraint), unless otherwise required.De�nition 1 (Proper delineation) : For a given BBO problem, a relation ri, a class com-parison statistic T , and a memory size, Mi, if DC(ri; T ;Mi) = 1, we say that ri properlydelineates the search space.Let us consider our 4-bit problem again. Consider the relation f###. As shown in Table2.5, when the class average is used to compare the classes 1### and 0###, the class 0###ranks higher than 1###. When Mi = 1, TOP(Ci[ ]; 1) does not contain the class 1###,which actually contains the desired solution. Therefore, we say that the relation f### doesnot properly delineate the search space with respect to the class average statistic. On theother hand, relations ###f and fff# do satisfy this requirement using this statistic. Thisdelineation requirement plays an important role in SEARCH processes. It essentially quali�es or28
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disquali�es a relation for a particular search problem. If a relation does not properly delineatethe search space, there is very little chance that the class with the best solution will be detected.Therefore, for a given class comparison statistic, whether or not a relation is appropriate canbe directly quanti�ed based on this characteristic function. However, in reality the algorithmdoes not know this constraint. The algorithm has to decide whether or not a relation properlydelineates the search space from the limited number of samples taken from the search space.Therefore, determining whether or not a relation properly delineates is again essentially adecision-making problem.Given a �nite set of samples from the search space, a class comparison statistic, T , thememory size Mi, and a relation ri, the goal is to determine whether a relation classi�es thesearch space in such a way that C�;i is in TOP(Ci[ ];Mi). Since the problem is now reducedto a decision-making problem instead of the previous binary characteristic function, we canapproach it using the same strategy that we took for selecting better classes. In other words,we can start comparing relations, estimate how well a relation would satisfy the delineationrequirement compared to another relation, and choose the better relations. This problem issimilar to the class selection problem; the only di�erence is that now we are trying to choosebetter relations instead of better classes. The �rst question is: How do we compare two relations?While comparing two classes, we needed a class comparison statistic, T . The same thing can bedone for relations. Let us denote a relation comparison statistic by Tr. This statistic is used tocompute an ordering among the relations. Denote this ordering relation by �Tr . The orderingamong the relations in 	r may not remain the same when relations are compared based on alimited number of samples. In other words, if rj �Tr ri, then it is not necessarily true thatr̂j �Tr r̂i; I denote a relation ri when compared based on limited sampling by r̂i. Figure 2.6shows two orderings of the relation space, one depicting the actual ranking and the other basedon sampling information.I shall assume that there are at least kSrk relations in 	r , needed to solve the problem,that satisfy the delineation constraint. If this is not true, the chosen set of all relations 	ris not appropriate and a new set should be chosen. Before selecting a particular relation, theordering among the relations is computed and one among the top kSrk relations is chosen. Thisprocess of relation selection involves decision making in absence of complete knowledge and29
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Figure 2.6: Ordering of relations. The left ordering shows the actual ordering and the rightone corresponds to the estimated one.it is therefore susceptible to decision errors. The following subsection describes the resolutionprocess.2.3.2.4 Resolution of classesResolution plays an important role in SEARCH. Resolution takes advantage of possible deline-ability of relations. Classi�cation of the search space de�ned by a relation is moderated by theresolution process. If possible, resolution eliminates classes that are not necessary to considerby using the information gathered by previous evaluations of some other relations. Let rj be arelation that properly delineates the search space with memory size Mj . Let ri be the relationcurrently being evaluated, and ri can be logically expressed as rj ^ rk, where rk is a relation.Resolution of Ci with respect to rj eliminates those classes of Ci that need not be consideredusing our knowledge about rj . This resolved set of classes in Ci can be formally de�ned as[b=Nj ;:::Nj�Mj [a=1;:::NiCa;i\C[b];jwhere the index b varies over the all Mj top ranked classes of relation rj and index a denotesthe di�erent Ni classes in Ci. C[b];j is the rank b member of the ordered collection of classesin Cj and Ca;i is the a member of the unordered collection of classes Ci. Let us illustratethe concept using our four bit problem. Consider relations fff# and ##ff . Assume thatwe already evaluated fff# and that it is believed to delineate the search space properly with30
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Mi = 1. The top ranked class is 111# computed based on the sample set, as shown in Table 2.7.While evaluating relation ##ff , resolution with respect to fff# can be used to prune outsome of the classes in ##ff . Relation ##ff de�nes four classes: ##11, ##01, ##10, and##00. According to the above de�nition, resolution of ##ff with respect to fff# producesthe following classes|##11 and ##10. As we see, resolution eliminates classes ##01 and##00.The following sections present an analysis of SEARCH with an objective to quantify thedecision success probabilities in class and relation selection processes.2.4 Decision Making in SEARCHThe previous sections presented SEARCH from both informal and formal points of view. Theyalso posed the class and relation selection processes as decision problems in absence of completeknowledge. In this section I analyze these two sources of decision error and combine them todevelop an expression for the overall success probability.Two kinds of decision errors may make the selection of better classes erroneous:1. The relation used to de�ne collection Ci is such that for the chosen T , the subset C�;iis not in TOP(Ci[ ];Mi). Therefore, despite how well the sampling is done, the selectionprocess will always miss the subset containing x�, unless Ĉ�;i is ranked higher by samplingerror. A search algorithm needs to determine whether or not a relation does this from a�nite number of samples. Therefore, this could be a source of error. Let us call this errorthe relation selection error.2. Even when C�;i is in TOP(Ci[ ];Mi), sampling error can produce a di�erent partial orderstructure for Ĉ1;i; Ĉ2;i; : : : ĈNi;i. As a result Ĉ�;i may not be in TOP(Ĉi[ ];Mi). Thesampling error may result in incorrect ordering of the classes and I call this the classselection error.These two dimensions of decision error in BBO determine the success probability. The followingsections analyze the success probabilities associated with each of these dimensions. Finally, theyare combined to develop an expression for the overall success probability.31
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2.4.1 Relation selection successIf an algorithm does not properly delineate the search space, it is not likely to select the classcontaining the optimal solution. Since, in the absence of knowledge, there is no way to knowwhether a relation satis�es this requirement or not a priori, this can only be estimated basedon the sampling information. Relations are ordered based on the measure Tr, and kSrk toprelations are selected. Since these top kSrk relations are just the estimated relations that satisfythe delineation constraint, there is the possibility of decision error. If ri is actually in the topkSrk relations, then the probability that r̂i will also be within the top kSrk relations depends oncorrect decision making in the comparison with at least 	r � kSrk relations. Denote a relationwhich actually does not satisfy the delineation constraint by rj . If the minimum probabilitythat r̂j �Tr r̂i over all possible relations is denoted by, Pr(r̂j �Tr r̂i)min, the success probabilitythat r̂i will be one among the top kSrk relations isPr(CRS j ri) � Pr(r̂j �Tr r̂i)k	rk�kSrkmin ; (2.2)where CRS stands for correct relation selection. The following subsection considers the decisionmaking in class selection process.2.4.2 Class selection successLet us now consider the class selection problem. The probability that the best solution is in anyof the selected subsets will be denoted by Pr(CCSjri). CCS stands for correct class selectionand conditional to ri, reects its association with relation ri. Let Pr(Ĉj;i �T Ĉ�;i) denote thesuccess probability given that Cj;i �T C�;i, and let Pr(Ĉj;i �T Ĉ�;i)min be the minimum valueof Pr(Ĉj;i �T Ĉ�;i) over every Ĉj;i which has a depth greater than that of Ĉ�;i and there is alink connecting it to Ĉ�;i.Now noting that Mi top classes are selected,Pr(CCS j ri) � Pr(Ĉj;i �T Ĉ�;i)Ni�MiminThis gives the success probability for a particular relation ri.32
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2.4.3 Overall successThe overall success probability for all the considered relations in Sr then becomesPr(CS j 8ri 2 Sr) = Y8ri2Sr Pr(CRS j ri)Pr(CCS j ri): (2.3)This equation captures the general idea that will be used in the following sections. As we see,at the top level, the success of a blackbox search algorithm depends on1. the success probability in �nding relations that properly delineate the search space and2. the success probability in detecting the class which actually contains the desired solution.At a lower level, the overall success depends on1. the class comparison statistic, �T ;2. the relation comparison statistic, �Tr , which clearly depends on �T and memory size Mi;3. the way samples are generated by perturbation operator, Pi, which may vary with i. Aperturbation operator generates new samples during the search. Note that the samplescan either be generated randomly or by using some adaptive strategy;4. the cardinality of Ci, that is, Ni and the number of top ranked classes selected for futureconsideration, Mi.The following sections specialize the observations of this framework to a speci�c class com-parison statistic and representation. First, I consider an ordinal class and relation comparisonstatistic.2.5 Ordinal Class and Relation SelectionConstructing a total order and selection of some Mi top subsets from that order have beenstudied using both parametric and non-parametric approaches (Gibbons, Sobel, & Olkin, 1977).If we are willing to make assumptions about the individual distributions of the members ofCi, nice statistics can be formulated to solve this selection problem. However, in the following33
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discussion, I adopt a non-parametric, ordinal approach (David, 1981) that allows a distribution-free analysis of the relation and class comparison process. The purpose of this section is to derivebounds on the success probability and sample complexity for a quite general ordinal relationand class comparison statistics.Section 2.5.1 considers an ordinal class comparison statistic and the SEARCH framework isspecialized for this statistic. Section 2.5.2 further specializes SEARCH for an ordinal relationcomparison statistic. Section 2.5.3 combines the decision making for both better classes andrelations; it also bounds the overall success probability. Finally, Section 2.5.4 derives the overallsample complexity and discusses its properties.2.5.1 Ordinal class selectionAs I argued in the previous section, BBO can be viewed as a combined process of search forbetter relations and better classes de�ned by each of these relations. Let us �rst consider theclass comparison process from an ordinal perspective. In order statistics any two classes will becompared based on their � quantile of the cumulative distribution function (cdf). A quantileof order � can be de�ned as the number ��, such that F (��) = �, where F (�) is the cdf of �.This de�nition of quantile is not fully satisfactory when the cdf is discrete and the � quantilemay not be unique. In such cases, however, we can de�ne it as any convex combination ofpoints in the closure of the set f� : F (�) = �g. To convey the main idea without unnecessarycluttering of symbols, let us assume that the � quantile is unique. We should note that suchquantile-based class comparison will always produce a total order on the collection Ci.Consider the comparison between two classes Cj;i and Ck;i. Assume that we take n samplesfrom each of these classes. I shall denote n samples from the class Cj;i by Ĉ1;j;i; Ĉ2;j;i; : : : Ĉn;j;i;the corresponding objective function values by �1;j;i;�2;j;i; : : :�n;j;i. These n samples can betotally ordered on the basis of their objective function values as follows:Ĉ[1];j;i �� Ĉ[2];j;i �� � � � �� Ĉ[n];j;iwhere, Ĉ[!];j;i �� Ĉ[�];j;i if �̂[!];j;i � �̂[�];j;i. �̂[k];j;i denotes the k-th order statistic. The sampleestimate of the � quantile for the class j is denoted by y�;j . De�ne an integer � = �(n + 1);then, y�;j;i = �̂[� ];j;i. If �(n + 1) is not an integer, we can set � equal to the largest integer34
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The probability of correct selection among these two classes can be written asPr(�̂[� ];j;i �� �̂[� ];k;i) = X8z Pr(�̂[� ];j;i = z)Pr(�̂[� ];k;i > z)� Pr(�̂[� ];j;i � �[� ];j;i)Pr(�̂[� ];k;i > �[� ];j;i): (2.5)Now we can write Pr(�̂[� ];k;i > z) = 1� Pr(�̂[� ];k;i � z)= 1� nXw=� (nw)(F (z))w(1� F (z))n�w� 1� (n� )F (z)� : (2.6)Therefore, Pr(�̂[� ];k;i > �[� ];j;i) � 1� (n� )(�� d)� : (2.7)Similarly, we can write that Pr(�̂[� ];j;i � �[� ];j;i) � (n� )�� : (2.8)Noting that (n� ) � �n� �� , and using inequalities 2.5, 2.7, and 2.8, we can writePr(�̂[� ];j;i �� �̂[� ];k;i) � �n� �� �� (1� (n� )(�� d)�)= � n�(n+ 1)�� �� �1� �n�(n+1)�(�� d)�(n+1)�' � n�n�� �� (1� (n�n)(�� d)�n)= 1� (n�n)(�� d)�n: (2.9)It can be shown (Cormen, Leiserson, & Rivest, 1990)(pp. 102) that, for 0 � � � 1,(n�n) � 2nH(�); (2.10)36
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where H(�) is the binary entropy function, H(�) = �� log2 � � (1 � �) log2(1 � �). H(0) =H(1) = 0 and H(�) takes the maximum value for � = 0:5. Using 2.10 and 2.9 we writePr(�̂[� ];j;i �� �̂[� ];k;i) � 1� 2nH(�)(�� d)�n: (2.11)If we denote the cdf of the class containing the optimal solution x�, then de�ned00 = minfF (�[� ];�;i)� F (�[� ];j;i)j8jg;the probability that the class Ĉ�;i will be within the top Mi classes isPr(CCS j ri) � [1� 2nH(�)(�� d00)�n]Ni�Mi : (2.12)Given relation ri that properly delineates the search space, Equation 2.12 can be used tocompute the probability that C�;i will be within the top Mi classes. Before we proceed towardcomputing the overall correct selection probability, we need to consider the search in the relationspace.2.5.2 Ordinal relation selectionA relation is appropriate if it properly delineates the search space. Determining whether or nota relation satis�es this constraint with absolute certainty is not possible unless we completelyenumerate the search space. Therefore, in reality, the characteristic function DC() is replacedby an estimator that measures how likely a relation satis�es delineation constraint. Let usde�ne a measure � : 	r � 2C � 2X ! <. 2C denotes the collection of classes and 2X denotesthe sample set. For a given relation ri, the corresponding set of classes Ci, and a sample setS, this measure �(ri; Ci;S) returns a real value that corresponds to the chances of ri to satisfythe delineation constraint (i.e. C�;i is a member of TOP(Ci[ ];Mi)). In short, �(ri; Ci;S) willbe written as �i. This measure will be used to order the equivalence relations ri; rj 2 	r. Letus again adopt an ordinal approach to compare di�erent relations, just as we did for selectionof better classes. For any two relations ri and rj , the corresponding �i and �j can be treatedas random variables. In the class space the random variable was de�ned to be the objectivefunction value of the samples. Unlike that, here in the relation space the random variable is37
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Figure 2.8: Cumulative distribution function of two relations ri and rj .the measure �, which is de�ned over a collection of classes and a sample set for a given relationrelation. Since, for a given ri, the computation of �i depends on a tuple from (2C � 2X ), acollection of nr such tuples will generate a distribution of di�erent values of �i. Figure 2.8shows the cdf of two competing relations ri and rj. Let us say that ri satis�es the delineationconstraint and rj does not.If we compare these two relations on the basis of some �r-th order statistic, the successprobability can is computed in exactly the same way that we just did for class comparisons. If�r be the corresponding percentile,Pr(r̂[�r];j ��r r̂[�r];i) � 1� 2nrH(�r)(�r � d0r)�rnr (2.13)where d0r = minfF (�[�r];j)� F (�[�r ];i)j8j; 8igwhere F is the cdf of the relation comparison statistic of relation ri. d0r is essentially similar tod00 , except that this is for relation comparison instead of the previous case of class comparison.In the most general case, a relation needs to be chosen out of the all possible relations in 	r.However, in reality, it may be true that only a subset of 	r is chosen at a time. In the followinganalyses I consider the general case, in which all relations in 	r are under consideration. Let usassume that among these 	r relations, the set 	g � 	r contains all the relations that properly38
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delineate the search space. If relation ri 2 	g , then the probability that ri will be correctlyidenti�ed is Pr(CRS j ri 2 	g) � [1� 2nrH(�r)(�r � d0r)�rnr ]k	rk�k	gk: (2.14)This is the success probability in choosing one good relation. If we need Sr � 	r relations tosolve a problem, we can bound the overall success probability in the relation space as follows:[1� 2nrH(�r)(�r � d�r)�rnr ](kSrk(k	rk�k	gk)) � qr2nrH(�r)(�r � d�r)�rnr � 1� q1=(kSrk(k	rk�k	gk))rnr > log(1� q1=(kSrk(k	rk�k	gk)r )H(�r) log 2 + �r log(�r � d�r)nr > log(1� q1=(kSrk(k	rk�k	gk)r )�r log(�r � d�r) ; (2.15)where d�r is a constant such that d0r � d�r and qr is the desired bound on the relation selectionsuccess probability. Now, noting that log(1 � a) � �a and that both the numerator anddenominator of inequality 2.15 are negative numbers, we can write that�r log(�r � d�r) = �r �log�1� d�r�r�+ log�r�� �r ��d�r�r + log�r�= �d�r + �r log �r: (2.16)For a given class comparison statistic �r is constant, and therefore, �r log�r is also a constant.Since we are primarily interested in the order of growth of nr, let us neglect this constant termof Inequality 2.16. Now the Inequality 2.15 can be written as,nr > log(1� q1=(kSrk(k	rk�k	gk)r )�d�r (2.17)Inequality 2.17 can be further rearranged. De�ne delineation-ratio,
 = Number of relations in 	r that properly delineatesTotal number of relations in 	r39
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= k	gkk	rk (2.18)When this ratio is high, searching for appropriate relations is easier, since most of the membersof the relation space are appropriate for properly classifying the search space. Using de�nition2.18 and Ineqality 2.17 we can writenr > log(1� q1=(kSrk k	rk(1�
))r )�d�r : (2.19)This bounds the overall computational complexity in the relation space. Inequality 2.19 can befurther simpli�ed using the approximation log(1� x) � �x for x << 1,nr > q1=(kSrk k	rk(1�
))r d�r : (2.20)This clearly shows that nr increases as qr increases and that nr increases when d�r is reduced.Since qr � 1, nr decreases as 
 increases. As the number of relations needed to sove theproblem, kSrk, increases, nr also increases. The collection of relations 	r de�nes the completesearch space for relations. The larger the number of relations in 	r , the more computation isrequired for searching for appropriate relations.The decision making in the relation and class spaces are combined in the following section.2.5.3 Overall selection successLet us now combine the search for better relation and better classes together and compute theoverall success probability. De�ned0 = minfF (�[� ];�;i)� F (�[� ];j;i)j8j; 8ig:d0 is basically the minimum possible value of d over all classes (index j) which are comparedwith class containing the optimal solution and all relations (index i) in Sr. Now let us considerthe overall class selection success probability given by equation 2.3. Note that the relation�� imposes a total order onto Ci. De�ne, Nmax as the maximum possible value of Ni overall relations in Sr; Let Mmin and qr be the minimum value of memory size Mi and bound onsuccess probability in choosing a relation respectively over all the relations in Sr. In formal40
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notation, Nmax = maxfNij8ri 2 SrgMmin = minfMij8ri 2 SrgIf d� is a constant such that d0 � d�, just like the previously de�ned d�r , then the overall successprobability can be bounded as follows:[(1� 2nH(�)(�� d�)�n)(Nmax�Mmin)]kSrkqr � q2nH(�)(�� d�)�n � 1� � qqr� 1kSrk(Nmax�Mmin)n > log(1� � qqr � 1kSrk(Nmax�Mmin) )H(�) log 2 + � log(�� d�)n > log(1� � qqr � 1kSrk(Nmax�Mmin) )� log(�� d�) (2.21)The denominator of Inequality 2.21 can be simpli�ed in a manner similar to inequality 2.16.The simpli�ed expression is,n > log(1� � qqr � 1kSrk(Nmax�Mmin) )�d� : (2.22)This inequality bounds the number of samples needed from each class to achieve an overallsuccess probability of q in the combined relation and class spaces; qr gives the given level ofsuccess probability in choosing kSrk relations correctly. The cost of increasing the bound qrcan be realized using inequality 2.19.2.5.4 Sample complexityThe previous subsection derived closed-form bounds on the overall success probability. Thiscan be directly used to bound the overall sample complexity,SC � NmaxkSrk log(1� � qqr � 1kSrk(Nmax�Mmin) )�d� : (2.23)41
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This inequality gives the overall sample complexity when the probability to �nd the globallyoptimal solution is at least q. This expression can be further simpli�ed using reasonable ap-proximations to clearly explain its physical signi�cance. Since � qqr � 1kSrk(Nmax�Mmin) � 1 andlog(1� x) � �x for x << 1, we can approximate inequality 2.23 as follows:SC � NmaxkSrkd� � qqr� 1kSrk(Nmax�Mmin) : (2.24)Inequality 2.24 presents a clear picture of the contributions of di�erent parameters of theSEARCH framework into the sample complexity. Recall that q is the bound on the overallsuccess probability in the relation and class spaces combined. Clearly, sample complexity SCgrows polynomially with q. On the other hand, qr is the minimum bound in the success proba-bility in choosing all kSrk relations correctly. The cost of demanding higher success probabilityin the relation space shows up in inequality 2.19. However, as we increase our success proba-bility in the relation space, the overall success probability in the combined relation and classspaces increases. The sample complexity should therefore decrease as success probability inthe relation space increases. Inequality 2.24 clearly shows that SC decrease with increase inqr . Note that the ratio � qqr � 1kSrk(Nmax�Mmin) approaches 1 in the limit as kSrk(Nmax �Mmin)approaches in�nity. Therefore, SC grows at most linearly with the maximum index value Nmaxand the cardinality of the set Sr. Recall that d� de�nes the desired region of indi�erence;in other words, it de�nes a region in terms of percentile within which any solution will beacceptable. The sample complexity decreases as the d� increases.This bound on sample complexity establishes an insight introduced earlier in this chapter.In the beginning of Section 2.2, I argued that BBO can perform no better than random enu-meration unless we try to exploit the relations among the members of the search space. Nowthat we have a closed-form bound on sample complexity, let us investigate the case when norelations are assumed among the members. Saying no relations are assumed essentially meansthat there exists only one relation in 	r that basically divides the complete search space into aset of singleton classes. For our 4-bit problem representation, this could be the relation ffff .This relation divides the search space into 16 singleton classes, which is essentially the com-plete search space. From the de�nition of global optima, we know that such a relation alwaysproperly delineates the search space. Therefore, Sr = 1 and qr = 1. The index of this relation42
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is same as the caridinality of the search space. So, Nmax = kXk, where kXk denotes the size ofthe search space X . Substituting these in Inequality 2.24 we getSC � kXkq 1kXk�Mmind� : (2.25)This inequality clearly tells us that the overall sample complexity becomes the size of the searchspace when we completely neglect all relations that put at least two members together in a class.The only advantage that we get comes from our relaxation in the desired solution quality (d�)and the overall success probability (q). This con�rms that although SEARCH provides oneparticular perspective of BBO, the importance on relations is fundamental, and it should beemphasized in all possible models of BBO that aspire to guide designing BBO algorithms thatperform better than random enumerative search. No BBO algorithm can transcend the limitof random enumerative search without inducing relations among the members.This sets the background for the coming section. This con�rms that induction is an im-portant and essential aspect of BBO. The Probably Approximately Correct (PAC) learningframework (Natarajan, 1991; Valiant, 1984) o�ers a perspective of induction. It will be inter-esting to note the correspondences between SEARCH and PAC learning. The following sectionpresents a comparative discussion between them.2.6 SEARCH and PAC LearningInducing relations is an essential aspect of SEARCH. The Probably Approximately Correct(PAC) learning theory (Haussler, 1989; Natarajan, 1991; Valiant, 1984) provides a frameworkto quantify the computation in inductive learning in a distribution-free, probabilistic, andapproximate sense. SEARCH and PAC share some common characteristics, but they alsodi�er in many fundamental aspects. The objective of this section is to point out the maincorrespondences between these two frameworks.First, I present a brief review of some of the elementary concepts of PAC framework. Next,I discuss the similarities and the dissimilarities between SEARCH and PAC.The PAC framework presents a computational theoretic perspective of inductive learning.This framework views inductive learning as a probabilistic process of learning hypothesis which43
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sometimes may give incorrect results. Although this framework has now led to a separate �eldwith a large volume of literature, no e�ort will be made to cover all the results. A review of therecent progress in this area can be found elsewhere (Natarajan, 1991). In this section, I shallrestrict myself to cover some of the elementary results reported in the PAC literature whichwill su�ce our main purpose|comparing PAC with SEARCH.Theorem 1 (Blumer, Ehrenfeucht, Haussler, and Warmuth (1987)) : Let H be a setof hypotheses over a universe U and let S be a set of m training examples drawn independentlyaccording to P (u), �; � > 0. Then if F̂ 2 H is consistent with all training examples in S andm � 1� �log 1� + log kHk� ; (2.26)then the probability that F̂ has error greater than � is less than �.This inequality bounds the sample complexity in PAC. For a given hypothesis space H ,acceptable error level �, and failure probability �, this inequality tells us the minimum numberof samples needed to learn a hypothesis with error less than �.As we noted earlier, the sampling process in blackbox optimization can be viewed as aninductive process. Searching for an appropriate relation can be viewed as an inductive searchfor a correct hypothesis. However, solving a BBO often requires many such inductive searches,since �nding the optimal solution using a single relation is very unlikely for non-trivial problems.Therefore, the PAC framework can be philosophically viewed as a computational process em-bedded within the SEARCH framework. This argument will be further clear from the followingdiscussion.When we compare Inequalities 2.26 and 2.23, several observations can be made. First ofall, note that both of these frameworks are probabilistic and approximate in nature. However,there are some fundamental di�erences between how these relaxations are introduced. The �failure probability of PAC gives the overall bound on the chance to succeed. On the otherhand, the success probability in SEARCH in introduced at the level of individual relationand class evaluation processes. Although both q and qr are de�ned for bounding the overallsuccess probabilities, the fundamental relaxations originate from the relaxed sampling duringthe relation evaluation process and the class comparison process.44
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The � parameter of PAC presents a cardinal relaxation of the solution quality. In otherwords this relaxation parameter depends on the absolute values of the accuracy of the learnedhypothesis. On the other hand, in the SEARCH framework, the relaxation is ordinal in nature,meaning the quality of the solution is determined by its ranking among all the members of thesearch space.Both SEARCH and PAC adopt a distribution-free approach for computing the sample com-plexity. Another interesting similarity between these two can be observed by noting the role ofVapnik-Chervonenkis (VC) dimension in PAC framework. It has been shown elsewhere (Blumer,Haussler, & Warmuth, 1990) that a space of hypotheses H is PAC learnable if and only if ithas a �nite VC dimension. VC dimension is used as a measure to quantify the learnabilityof a hypothesis space. The SEARCH framework also has a counterpart of this measure|thedelineation constraint. SEARCH requires a set of relations that can be de�ned over the searchspace, which must satisfy this constraint for a given class comparison statistic and memorysize. If the number of relations satisfying this delineation requirement is too small comparedto what is needed to the solve the BBO, success is very unlikely. When representation is usedas the major source of relation, this requirement provides one way to quantify what it meansto be an appropriate representation.The following two sections consider simulated annealing|a BBO algorithm and evolution|a natural search process and demonstrate that their underlying computation can be capturedusing SEARCH.2.7 SEARCH And Simulated AnnealingLike many other algorithms, simulated annealing (SA) algorithm does not explicitly considerthe relations. Therefore, the projection of SA into the SEARCH framework depends on ourperspective toward SA as well. Since relations can be de�ned in many ways, when the relationspace is not explicitly speci�ed, identifying it leaves room for speculation. The original versionof SA does not emphasize representation. Moreover, the random neighborhood generationoperator does not pay enough consideration to the relations and classes de�ned by the chosenrepresentation. 45
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/* Initialization */T = High temperature; // Initialize the temperature to a high valueInitialize(x); // Randomly initialize the stateEvaluate(x); // Evaluate the objective function valuefRepeatf Generate(x'); // Generate new stateEvaluate(x'); // Evaluate the objective function valueIf ( Metropolis criterion(x, x') TRUE )x = x' // Change state to x'gUntil (Equilibrium is reached)Decrease(T); // Decrease the temperaturegUntil ( T < Tmin Or (termination criterion TRUE) )Figure 2.9: A pseudo-code for simulated annealing.In this section, we therefore choose to view SA as a processor of relations and classes de�nedby the neighborhood generation operator. The following part of this section briey discussesdi�erent counterparts of SEARCH in the SA.� Relation space: A state xi and the neighborhood generation operator (P) are the twoingredients of the relations processed by the SA. For a given state xi, the neighborhoodgeneration operator de�nes a set of states that can be reached in certain number of steps(s) from xi. This de�nes a relation among a certain subset of the search space. Therefore,a relation ri in SA can be speci�ed by the triple (xi;P ; s).� Class space: The relation (xi;P ; s) divides the search space into two classes|(1) theset of states that can be reached from x by applying P for s number of times and (2) therest of the search space. This de�nes the class space for a given relation. Let us denotethe �rst class by C1;i and the second by C2;i.� Sample space: The SA processes only one sample at a time. The sample represents thestate of the algorithm. 46
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Figure 2.10: The SEARCH perspective of SA.Searching for the optimal solution in SEARCH also requires di�erent comparison statisticsand resolution for combining the features of di�erent classes from di�erent relations. Thefollowing discussion points out their counterpart in SA.� Relation and class comparison statistics: Since SA does not explicitly de�nes therelations and classes, only one statistic, de�ned by the Metropolis criterion, is used forserving both purposes. This comparison statistic varies as the temperature changes.� Resolution: Consider the two relations (x1;P ; s) and (x2;P ; s), where x1 and x2 aretwo arbitrary states from the search space. Let us denote the set of states that can bereached from x1 and x2 by applying P for s times by C1;1 and C1;2, respectively. Let xibe the current state of SA and xi+1 be the next state. Now if x1 and x2 are such thatthe xi 2 C1;1 and xi+1 2 C1;2, then the next state, xi+1, is basically a sample from theintersection set of the two classes C1;1 and C1;2. Generating samples from the intersectionset of classes is essentially what resolution does.The above discussion presents a perspective of SA in the light of SEARCH. Figure 2.10pictorially depicts this perspective of SA. This �gure schematically shows the trajectory of SAwithin the overlapping classes. As I mentioned earlier, this section presents only one possibleway to de�ne classes and relations in SA. Since SA does not explicitly de�ne them, di�erentpossibilities may be speculated.The following section presents the main arguments of an e�ort to develop an alternateperspective of natural evolution using the SEARCH framework (Kargupta, 1995a).47
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2.8 SEARCH And Natural EvolutionThe SEARCH framework, introduced in this thesis, is developed as a result of an e�ort tounderstand the fundamental computation in blackbox optimization. In this section, I take astep in a di�erent direction. I argue that the lessons of SEARCH are also useful in understandingthe search in natural evolution. An alternate model of evolutionary computation is proposedby Kargupta (1995a) that establishes the computational role of gene expression in naturalevolution. Here, I make an e�ort to summarize the main arguments of that e�ort to linkSEARCH and natural evolution.Section 2.8.1 briey discusses the ow of information in natural evolution. Section 2.8.2points out the main problem of the existing models of evolutionary computation|lack of em-phasis on gene expression. Finally, Section 2.8.3 draws the correspondence between SEARCHand evolution and presents an alternate perspective.2.8.1 Information ow in evolutionInformation ow in evolution is primarily divided into two kinds:� extra-cellular ow: storage, exploration, and transmission of genetic information fromgeneration to generation;� intra-cellular ow: expression of genetic information within the body of an organism.Each of these will be discussed in the following two paragraphs.The extra-cellular ow involves replication, mutation, recombination, and transmission ofDNA (deoxyribonucleic acid) from parents to o�spring. A DNA molecule consists of two longcomplementary chains held together by base pairs. DNA consists of four kinds of bases joined toa sugar-phosphate backbone. The four bases in DNA are adenine (A), guanine (G), thymine (T)and cytosine (C). Chromosomes are made of DNA double helices. For more detailed description,the reader should refer to Alberts, Bray, Lewis, Ra�, Roberts, and Watson (1994, Stryer (1988).Eukaryotes (most of the developed organisms) have two chromosomes in their cell nucleus, andthus called diploid organisms. On the other hand, in prokaryotes, such as single-celled bacteria,only one chromosome is present. These are called haploid organisms. The DNA sequence ischanged by mutation. Crossing over and subsequent recombination result in exchange of base48
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Transcription ReplicationFigure 2.11: Intra-cellular ow of genetic information.pairs between the parent DNA sequences. These processes result in generation of new DNAsequences. DNA is then transmitted from the parents to the o�spring. The DNA is responsiblefor de�ning the phenotype of organism and thereby controls the suitability of the organism inthe environment. This suitability determines the selective pressure on the organism. Fitterorganisms survive, and the rest do not. However, the computation of the phenotype fromthe DNA|gene expression|is an interesting process in itself. The following paragraph brieydescribes the main steps of gene expression, that de�ne the intra-cellular ow of evolutionaryinformation.Expression of genetic information coded in DNA into the proteins is called the gene expres-sion. Expression of genetic information takes place through several complicated steps. However,the major distinct phases are identi�ed as� transcription: formation of mRNA (ribonucleic acid) from DNA� translation: formation of protein from mRNAFigure 2.11 shows the di�erent steps of gene expression. Each of them is briey described inthe following.Transcription synthesizes messenger RNA (mRNA) from part of the DNA. RNA (ribonucleicacid) consists of four types of bases joined to a ribose-sugar-phosphodiester backbone. The fourbases are adenine (A), uracil (U), guanine (G), and cytosine (C). Transcription is basicallyconstructing a sequence of bases from another sequence of bases|the DNA. Transcription isinitiated by some particular sequences of bases in DNA. They are known as promoter regions.For example, in many prokaryotes, the Pribnow box sequence TATAAT is a common promoter49
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region. Transcription continues until it reaches some particular kind of sequences of bases,known as a terminator region. RNA polymerase transcribes the portion of DNA betweenthe promoter and terminator regions. Regulatory proteins of a cell can directly control thetranscription of DNA sequences. There are two kinds of regulatory proteins:� gene activator protein, which enhances transcription of a gene, wherever it binds.� gene repressor protein, which inhibits transcription of a gene.These proteins usually bind to speci�c sequences of DNA and determine whether or not thecorresponding gene will be transcribed.Messenger RNA acts as the template for protein synthesis. Proteins are sequence of aminoacids, joined by peptide bonds. Messenger RNA is transported to the cell cytoplasm for produc-ing protein in the ribosome. There exists a unique set of rules that de�ne the correspondencebetween nucleotide triplets (known as codons) and the amino acids in proteins. This is knownas the genetic code. Each codon, comprised of three adjacent nucleotides in a DNA chain,produces a unique amino acid.Most of the existing models of evolutionary computation do not provide any understandingabout the computational role of the intracellular ow of genetic information. The followingsection points this out.2.8.2 Problems of the existing views of evolutionUnfortunately, many of the existing computational models of evolution address only the ex-tracellular ow of genetic information. Simple genetic algorithms (De Jong, 1975; Goldberg,1989; Holland, 1975), evolutionary strategie (Rechenberg, 1973), and evolutionary algorithms(Fogel, Owens, & Walsh, 1966) are some examples. These existing perspectives of evolutionarycomputation do not assign any computational role to the nonlinear mechanism for transformingthe information in DNA into proteins. The same DNA is used for di�erent kinds of proteins indi�erent cells of living beings. The development of di�erent expression control mechanisms andtheir evolutionary objectives are hardly addressed in these models. They primarily emphasizethe extra-cellular ow. The main di�erence among these models seems to be the emphasis oncrossover compared to mutation or vice versa.50
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Although gene expression is not emphasized very much in most of the popular modelsof evolutionary computation, several researchers realized its importance. The importance ofthe computational role of gene expression was �rst realized by Holland. He described (Holland,1975) the dominance operator as a possible way to model the e�ect of gene expression in diploidchromosomes. He also noted the importance of the process of protein synthesis from DNA inthe computational model of evolution. Despite the fact that traditionally dominance mapsare explained from the Mendelian perspective, Holland made an interesting leap by connectingit to the synthesis of protein by gene signals, which today is universally recognized as geneexpression. He realized the relation between the dominance operator with the \operon" modelof the functioning of the chromosome (Jacob & Monod, 1961) in evolution and pointed out thepossible computational role of gene signaling in evolution (Holland, 1975).Several other e�orts have been made to model some aspects of gene expression. Diploidyand dominance have also been used elsewhere (Bagley, 1967; Brindle, 1981; Hollstien, 1971;Rosenberg, 1967; Smith, 1988). Most of them took their inspiration from the Mendelian viewof genetics. The underspeci�cation and overspeci�cation decoding operator of messy GA hasbeen viewed as a mechanism similar to gene signaling in Goldberg, Korb, and Deb (1989).Dasgupta and McGregor (1992) proposed the so-called structured genetic algorithm, whichuses a structured hierarchical representation in which genes are collectively switched on ando�. This implementation also gathered its primary motivation from gene expression.However, none of these approaches really addressed the major steps in gene expression pri-marily identi�ed by the biologists during the last 30 years, and instead quantify their purpose interms the basic computational principles. Many questions involving the computational bene�tfrom the collective switching of genes or the regulatory mechanisms controlling the transcrip-tion of DNA to RNA remain unanswered. In the following section I present a brief accountof a recent e�ort (Kargupta, 1995a) to �ll in this lacuna using the lessons from the SEARCHframework. The central argument that evolves out of the following discussion is that the intra-cellular expression of genetic information plays an important role in evolutionary computationthat can be quanti�ed from the SEARCH perspective.51
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2.8.3 Evolutionary computation: The SEARCH perspectiveDespite the fact that nowhere during the development of SEARCH did we consider any ideafrom biology, it will be interesting to see how it views the evolutionary search in nature. Thefollowing part of this section briey discusses a possible correspondence between SEARCH andnatural evolution.� Sample space: DNA constitute the sample space. Crossover and mutation generate newsamples of DNA. A population of organisms de�nes the sample space for the evolutionarysearch.� Class space: Base sequences of mRNA transcribed in a cell correspond to only a part ofthe complete DNA. The sequences of amino acids in protein in turn correspond to basesequence in mRNA. The genetic code tells us that there is a unique relationship betweenthe nucleotide triplets of the DNA and the amino acids in the protein. Therefore, if weconsider the DNA as a representation de�ned over the evolutionary search space for lifeand di�erent forms of life, then the amino acid sequence of a protein corresponds to a classof di�erent DNA; every DNA in this class must have a certain sequence of nucleotidesthat can be transcribed to that particular sequence of amino acids. Since the geneticcode is unique, a particular sequence of amino acids can only be produced by a certainsequence of nucleotides. In other words, the sequence of amino acids in a protein de�nesan equivalence class over the DNA space.� Relation space: Recall that amino acid sequences in protein are translated from thenucleotide sequences of mRNA. The construction of mRNA is basically controlled by thetranscription process. Since an equivalence relation is an entity that de�nes the equiva-lence classes, the transcription regulatory mechanism can be viewed as the relation spacethat de�nes classes in terms of the nucleotide sequences in mRNA and �nally in termsof the amino acid sequences in proteins. Among the di�erent components of this reg-ulatory mechanism, regulatory proteins, promoter and terminator regions play a majorrole. Regulatory proteins exist as a separate entity from the DNA, but the promoterand terminator regions are de�ned on the DNA. It appears that there is a distinct rela-tion space comprised of the di�erent regulatory agents, such as activator and inhibitor52
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Table 2.9: Counterparts of di�erent components of SEARCH in natural evolution.SEARCH Natural evolutionRelation space gene switching mechanismClass space amino acid sequence in proteinSample space DNA spaceproteins. However, it is quite interesting to note that this space also directly makes useof information from the sample space|the DNA. Expression of genetic information ineukaryotic organisms is more interesting than that in prokaryotes. Apart from more so-phisticated transcriptional control system, Kargupta (1995a) pointed out that the diploidchromosome can be viewed as a process of relation construction.These possible relationships between the di�erent spaces of SEARCH and natural evolutionare summarized in Table 2.9.� Relation and class comparison statistics: Classes are de�ned by amino acid se-quences in protein. Proteins are directly responsible for almost every functional andorganizational behavior of an organism. Proteins are sometimes called the phenotype ofan organism because of this reason. The e�cacy of a protein is evaluated in terms of theorganism's performance, and natural selection assigns a certain selective measure to thisprocess. This can be viewed as a process of evaluating classes. On the relation front,there is already evidence that the settings for the intracellular expression of genetic in-formation evolves during the course of evolution (Alberts, Bray, Lewis, Ra�, Roberts, &Watson, 1994). Therefore, there must be some selective pressure toward the appropriateregulatory setting and that can be held responsible for the decision making in the relationspace.� Perturbation operators: Crossover, mutation, and gene deletions appear to be the per-turbation operators in natural evolution. They change the participating DNA sequence(s)and thereby generate new samples.� Resolution: Crossover and recombination swap di�erent portions of two DNAs. Al-though the exact mechanism of crossover is quite involved, the main outcome of the pro-53
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cess is exchange of DNA subsequences between the parent chromosomes. The o�springDNAs are therefore comprised of the features of classes containing the parent DNAs.Therefore, the o�spring are samples from the intersection set of the parent classes.The following section summarizes the major points discussed in this chapter.2.9 SummaryThis chapter started by noting that a BBO algorithm is not likely to perform better than arandom search unless some relations are exploited among the members of the search space. Thisled to the development of the SEARCH framework, which tries to exploit the role of relationsin BBO. SEARCH presents an alternate perspective toward blackbox optimization. It viewsblackbox optimization as a composition of the following di�erent processes:1. classi�cation of the search space;2. sampling from the search space;3. searching for appropriate relations that divide the search space in a suitable way;4. searching for better classes de�ned by each of these relations, so that the desired solutionis a member of one of these chosen classes;5. resolution.Searching along relations and the class spaces has three steps: (1) evaluation, (2) ordering, and(3) selection. Evaluation detects good relations or classes; ordering constructs a ranking basedon the evaluation; selection picks up the good ones and discards the bad ones.A relation is de�ned to be good if it can classify the search space in such a way that the classcontaining the globally optimal solution can be detected using the class comparison statistic.This requirement is called proper delineation of the search space. Determining whether arelation satis�es this or not requires decision making in absence of complete knowledge. Thisis a source of decision error in BBO.Detecting a good relation in turn requires approximate identi�cation of good and bad classesde�ned by the relation. This introduces the other dimension of the SEARCH framework,54
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searching for better classes. Even if the relation properly delineates the search space, decisionerror can be made during the comparison between two di�erent classes. This is again viewedas a decision problem.Success in blackbox optimization is tied with the successes along these two di�erent dimen-sions. After presenting a general description of search from this perspective, I incorporatedordinal class and relation comparison statistics into the framework. A closed form bound insample complexity is developed for any BBO that can be solved by considering a �nite set ofrelations de�ned among the members of the search space. The sample complexity grows linearlywith the cardinality of the set of relations, the maximum index value of these relations, thedesired solution quality (described using order statistics), the desired degree of appropriatenessof the relations, and the overall success probability demanded. This expression for sample com-plexity established my earlier argument that consideration of relations among the members ofthe search space is unavoidable if an algorithm aspires to perform better than random enumer-ative search. I speci�cally showed that the sample complexity approachs the size of the searchspace when we consider no relations that put at least two ground members into the same class.In this case, the only reduction in sample complexity comes from the relaxation in the desiredsolution quality and the overall success probability. Therefore, emphasizing the role of relationsis fundamental and should be a part of any model of BBO.This chapter has also noted the correspondences between SEARCH and PAC-learning. Inthe PAC learning framework, an algorithm seeks an approximately correct hypothesis in aprobabilistically correct way. Since hypotheses are nothing but relations, there must be somecorrespondences between these two frameworks. Although, unlike PAC-learning, the ultimateobjective of SEARCH is to �nd an optimal solution, not the best relation, SEARCH incor-porates the search in relation or hypothesis space to surpass the limits of enumerative search.Di�erent components of the bound on sample complexity in SEARCH are compared with theircounterparts in PAC. Both PAC and SEARCH are probabilistic and approximate procedures.However, these \probabilistic and approximate" aspects are introduced at two distinctly dif-ferent levels in SEARCH and PAC. Unlike PAC, SEARCH introduces relaxation at the levelof each relation evaluation. I also noted the delineation constraint in SEARCH as a possiblecounterpart of the VC dimension that characterizes the representation in PAC.55
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In order to demonstrate the generality of the SEARCH framework, the last part of thischapter considered two case studies. The �rst one considered the simulated annealing (SA)algorithm in the light of SEARCH. A detailed correspondence between the di�erent aspects ofSA with the SEARCH framework is drawn. Next, a brief description of evolutionary compu-tation is presented from the SEARCH perspective. Following Kargupta (1995a), we note thatSEARCH o�ers an alternate model of evolutionary computation that emphasizes the role ofintracellular ow of information|the gene expression. Unlike most of the existing models ofevolutionary computation, this perspective identi�es the DNA!RNA!Protein synthesis as aprocess of explicit construction of equivalence classes and relations.SEARCH lays the foundation for the materials in the following chapters of this thesis. Inthe next chapter, I shall describe the main implications of this framework and how they shouldbe used for developing a comprehensive approach toward solving BBO problems.

56
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Chapter 3Implications of SEARCHThe SEARCH framework developed in the previous chapter shows an alternate way to viewBBO. Di�erent facets of this framework have been addressed from an abstract quantitativeperspective. However, those formalisms lead toward meaningful, physical aspects of BBO. Inthis chapter I present the main physical implications of SEARCH. A framework like SEARCHshould contribute to each of the following aspects of problem solving:1. How do we de�ne an algorithm in this framework? How can we make them e�cient?2. How can we characterize problems that can be solved e�ciently and vice versa?3. What is the user's role in solving a BBO?The primary objective of this chapter is to answer these questions.I start the discussion by describing what it means to be a BBO algorithm in SEARCH.This is presented in Section 3.1. This is followed by Sections 3.2 and 3.3, in which two possibleways to make a BBO algorithm e�cient are pointed out. Section 3.2 describes the bene�ts of abottom-up approach of blackbox search, in which low-order relations are considered �rst. Sec-tion 3.3 discusses implicit parallelism|evaluating relations in parallel at no additional samplecomplexity. Next, in Section 3.4, I introduce the SEARCH perspective of problem di�cultyin BBO. De�ning di�cult problems sets the background for introducing the class of problemsthat can be solved in polynomial sample complexity. Section 3.5 presents the class of order-kdelineable problems that can be solved in polynomial sample complexity in SEARCH. Section3.6 discusses one important role of the user in solving a BBO|de�ning the source of relations.57
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Section 3.7 discusses some issues regarding the representation-operator interaction. Finally,Section 3.8 summarizes the main points of this chapter.3.1 Blackbox Optimization Algorithm in SEARCHThe SEARCH framework decomposed BBO into di�erent components such as the relationspace, class space, and the sample space. Searching in these spaces requires some fundamentaltools, such as some comparison statistics and a perturbation operator for generating samples.In this section, I list them together and project a complete picture of what it means to be aBBO algorithm in SEARCH.1. SEARCH views the solution domain through relations, classes, and samples. An algorithmin SEARCH should be provided with a set of relations 	r. Representation in genetic algo-rithms (GAs), perturbation operators of simulated annealing (SA), and the neighborhoodheuristic in k-opt algorithm are some examples of di�erent sources of relations.2. SEARCH also needs explicit storage for processing relations, classes, and samples. Themaximum possible values ofMr and Mi determine the size of the memory for storing rela-tions and classes respectively. In genetic algorithm the population serves as the memoryfor all three of these spaces. In SA the evaluation of di�erent classes de�ned using theperturbation operators is distributed over time and only one sample is taken at a time.The state of the SA algorithm serves as the memory for the sample space.3. Two statistic measures for comparing classes and relations are required. A Selectionoperator is used for comparing classes in the simple GA. The Simple GA does not reallysearch for better relations. On the other hand, in simulated annealing, the Metropoliscriterion is used for comparing two states; this can be viewed as a class comparisonstatistic.4. A perturbation operator, P is required for generating samples. In GA, crossover andmutation generate new samples. SA make use of a neighborhood generator for samplegeneration.5. Accepting criterion of success probability, q, and qr are necessary. Almost every practicalapplication of GA and SA either implicitly or explicitly makes use of an acceptance58
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criterion for success. Neither simple GA nor SA actually searches for better relations.Neither of them has any explicit criterion like qr.6. Required precision in solution quality, d� is required. Again, in practice, both GA andSA somehow introduce the factor controlling the desired solution quality. Goldberg, Deb,and Clark (1993, Holland (1975) quanti�ed the e�ect of desired solution quality on thesuccess probability using a parametric approach.In many algorithms, some of these parameters are not explicitly speci�ed. For example, inrandom enumerative search, no importance on relations is given. However, even this kind ofsearch can be shown as a special case of SEARCH. As I explained earlier in Chapter 2 duringthe discussion on sample complexity, the random enumerative search is essentially a search withone and only one relation in consideration that divides the search space into singleton classes.For example, in GA, no explicit speci�cation of class comparison statistic is required. However,this is taken care of by the chosen selection operator. One of the main objectives of this wholee�ort is to develop a more systematic approach toward the design and use of BBO algorithmsby explicitly identifying di�erent components of a BBO algorithm.SEARCH provides a common ground for developing new blackbox algorithms in the future.Regardless of the motivation and background, any blackbox optimization algorithm shouldclearly de�ne each of the above listed components. A BBO algorithm should de�ne how it pro-cesses relations, classes, and samples. It should state its relation and class comparison statistics.Apart from de�ning each of them properly, searching in the relation can take advantage of dif-ferent properties of the relation space. Moreover, the sample generation operator should complyto the decision making of the relation and class spaces.The following sections consider two possible ways to exploit the structure in relation space.3.2 Bottom-up Organization of SearchDuring the development of the SEARCH framework, no prior ordering among the relations in	r is assumed. We did not care, as long as a relation satis�ed the delineation constraint. Inthis section, I show that imposing a certain kind of ordering among the relations may lead tosome computational bene�t. First, I de�ne an ordering among the relations based on theirorder and then show that considering relations according to this ordering is advantageous.59
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Figure 3.1: Hasse diagram representation of the set of equivalence relations ordered on thebasis of a <o.The order of an equivalence relation ri 2 	r can be de�ned as the logarithm of its indexwith some base �. I shall denote this by o(ri). The index of ri is then Ni = �o(ri). Clearly,the index grows exponentially with o(ri). The set of all these equivalence relations 	r can bepartially ordered on the basis of a <o, de�ned as follows. If o(ri) < o(rj), then we say ri <o rj .Figure 3.1 shows a Hasse diagram representation of such an ordering in a ` = 3 representationscheme, which has a depth of 3. Choosing a low-order relation at the initial stage of searchwhen no regions are pruned out from future consideration is computationally advantageous.The following discussion rationalizes this conclusion.The fundamental idea is quite simple. Comparing classes can be relaxed as we did in theprevious chapter; two classes may be ordered with high con�dence from a sample set. However,completely discarding a class without taking a single sample can hardly be justi�ed. Notethat construction of an ordering among Ni classes requires �Ni2 � comparisons. Since Ni growsexponentially with the order of the relation, considering a relation of order in O(`) demandsexponential complexity computation. Therefore it is essential that the indices of the relationsconsidered during the initial stages of the search when no regions are discarded are bounded bysome constant. The argument can be driven home using an example. Consider an aribitraryproblem in 3-bit sequence representation The order one relation f## has an index value of 2.On the other hand, the index of an order two relation ff#, is 22. If a search algorithm startsits search with relation ff# then the number of comparisons needed to construct an orderingis going to be higher. 60
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Therefore, the order of the relation used at the initial stage of the search must be boundedby a constant, kc; otherwise the complexity of the ordering process will itself be exponential in`. Let us denote the set of relations Sr, when ordered on the basis of the sequence, they areconsidered by the algorithm by (Sr); also de�ne (	r)<o to be the set 	r partially orderedbased on the order of a relation.One possible way to keep the complexity under control is to make (Sr) and (	r)<o order-preserving. In other words, if r1; r2 2 Sr � 	r, then if r2 comes after r1 in (Sr), then r2 <o r1in (	r)<o . This gradual transition from low order relations to higher-order ones is what I callbottom-up organization of the search. This points out a computational justi�cation of a widelyreported, interesting observation about both natural and arti�cial complex systems. Complexevolving systems are characterized by the gradual growth of patterns from smaller to larger.A small pattern is the one in which the number of features in common to the members ofthe observed set is less. This bottom-up approach, often observed in nature, seems to have afundamental computational foundation.The following section considers another possibility of exploiting the structure of the set ofrelations when ordered based on the order of the relations.3.3 Implicit Parallelism: Parallel Evaluation of EquivalenceRelationsThe discussion on bottom-up organization of search led to the solution of considering therelations with low index values �rst. The structure of 	r , when partially ordered based onorder of the relations, can be further exploited to make the relation evaluation process moree�cient. In this section I show that when the poset (	r)<o is not linearly ordered, relationscan be evaluated in parallel at no additional sample evaluation. This observation appears tobe the underlying principle in the so called implicit parallelism (Holland, 1975).The perspective of the blackbox search as an exploration through (	r)<o opens up aninteresting possibility. Parallel exploration along di�erent branches in (	r)<o can be doneat no additional cost compared to that along a single branch. Such parallel evaluation ispossible as long as (	r)<o is not a totally ordered set. When (	r)<o is partially61
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ordered, there will be relations of the same order. Therefore, all these relations of the sameorder can be evaluated using the same set of samples.For example, the evaluation of ###f;##ff can be performed at no additional compu-tational cost in terms of function evaluations when the relations f###; ff## are alreadyevaluated. Little attention will make it obvious. Both f### and ###f divide the completesearch space into two di�erent ways. Similarly, the relation ff## divides the same searchspace in a di�erent way than the one by ##ff does. Clearly, the same set of samples usedto evaluate classes 1### and 0### can be used for evaluating classes ###1 and ###0.No additional function evaluation is needed for a constant con�dence requirement; the samplesare just needed to be di�erently partitioned. In general, the sample set needed to evaluate aparticular relation ri of order oi can be used for all other relations of the same order. Thiscomputational leverage can make an algorithm very e�cient in solving the class of order kbounded, delineable problems. As stated earlier, these problems can be solved by evaluatinga subset of all order k relations, whose intersection set is a singleton set. Since the globallyoptimal solution can be found by simply taking an intersection among the top ranked classesof this subset of all order k relations, the overall computational cost remains polynomial in theproblem dimension and the success probabilities.At this point one must take a moment to put this argument into proper perspective. Ourde�nition of computational cost has been solely focused on the number of function evaluations,i.e., the number of distinct samples taken from the search space. According to this de�nition,parallel evaluations of several equivalence relations do not incur any additional cost. However,consideration of every di�erent relation required partitioning the same set of samples in adi�erent way, followed by the computation of the class comparison statistic. Although thesample complexity remains the same, the overall time complexity increases.The previous three sections described di�erent components of BBO algorithm and pointedtwo possible ways to exploit the structure in the set of relations provided to the algorithm.These discussions naturally lead the reader to wonder about the computational limits of BBOalgorithms from the SEARCH perspective. The following section addresses this importantaspect of BBO|problem di�culty. 62
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3.4 Problem Di�culty in SEARCHSEARCH presents an alternate perspective of problem di�culty in BBO. In this section I �rstidentify the main dimensions of problem di�culty in SEARCH and then precisely de�ne acharacterization of di�cult problems in SEARCH.The expression for the sample complexity developed in the previous chapter immediatelyleads to identifying di�erent facets of problem di�culty in SEARCH. As we saw from Inequality2.23 the sample complexity grows linearly with the size of the set of relations considered to solvethe problem, Sr. Often this size depends on the \size" of the problem; the word \size" de�nesa parameter ` that bounds the search domain. In a sequence representation with constantalphabet size, the length of the sequences needed to represent the search space may be anexample of such a size parameter. This �nally sets the stage for introducing problem di�cultyin SEARCH.De�nition 2 (Problem di�culty in SEARCH) Given an optimization function � : X !< and a set of relations 	r, we call a problem di�cult for an algorithm if the total number ofsamples needed to �nd the globally optimal solution grows exponentially with `, q, qr, 1=d�, and1=d�r.The size of the problem is represented by `; q denotes the bound in the overall decisionsuccess probability in choosing the right classes; 1=d� de�nes the quality of the desired solution.Both q and 1=d� together can be viewed as representing the overall accuracy and the quality ofthe solution found; qr is the bound in success probability in choosing the right relations, and1=d�r represents the desired quality of the relations.The above de�nition of problem di�culty in SEARCH can be physically interpreted intothe following items:1. growth of the search space along problem dimension2. inadequate source of relations and decision making in relation space3. inaccurate decision making in choosing classes4. quality of the desired solution and relations63
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Each of these is briey discussed in the following.The search space increases as the problem dimension increases. For many interesting classesof problem the growth rate is exponential. This creates di�culty in solving the problem.Solving a BBO in SEARCH requires a set of relations that properly delineates the searchspace. If the number of relations in 	r that properly delineate the search space is small, thensuccess probability in solving the BBO is very small. The previous chapter de�ned a simplebut meaningful measure of the overall appropriateness of 	r , the delineation-ratio. This is theratio of the number of relations in 	r that properly delineates and the total number of relationsin 	r. When this ratio is high, searching for appropriate relations is easier, since most of themembers of the relation space are appropriate for properly classifying the search space. Thispoint will be illustrated in a later section of this chapter using some example problems.The overall decision error in choosing the classes that contain the globally optimal solutionwill be large unless the sampling is su�ciently rigorous. This is a source of decision error andcan cause di�culty.The quality demanded for the solution can also make a problem di�cult. If the desiredquality is very high, search in BBO may be di�cult. Similarly, if the required measure ofappropriateness of relations needs to be very high, searching for relations may be di�cult.In a way this basically de�nes what it means to be e�cient search in SEARCH. Therefore,now it is quite natural to ask whether we can identify some classes of BBO problems that canbe solved in polynomial sample complexity. The answer is yes. However, the relation betweenthe set of relations Sr and the problem size ` cannot be quanti�ed until we speci�cally considerrelations in physical terms. In the following section I consider the set of relations de�ned bysequence representation and introduce the class of order-k delineable problems that can besolved e�ciently in SEARCH.In the following section I introduce the class of order-k delineable problems in sequencerepresentation.
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3.5 Order-k Delineable Problems in Sequence RepresentationThe foregoing analysis treated the source of relations in a general way as an abstract entity.However, de�ning a speci�c class of problems and studying its sample complexity in SEARCHrequire relating Sr with the problem dimensions. In this section I consider the set of relationsinduced by a sequence representation for de�ning the class of order-k delineable problems thatcan be solved in polynomial sample complexity.Although so far we have frequently used sequence representation for illustrating the conceptswith examples, in this section I consider speci�c properties of the set of relations induced bysequence representation. Therefore, it may be appropriate to review the properties of thisrepresentation �rst.A sequence representation can be de�ned asI : X ! �`; (3.1)where � is the alphabet set. A particular position in a sequence may sometimes be called alocus (loci in plural). The particular letter of the alphabet in a locus is called the value of thelocus. I will also assume a convention of naming in which the leftmost position is called the �rstlocus, increasing toward the right. This sequence representation induces a set of equivalencerelations, 	r = ff;#g` (3.2)where f indicates values that must match for equivalence and # is a wild character that matchesany value at a locus. The cardinality of the set of all such equivalence relations k	rk = 2`.In sequence representation the order of an equivalence relation ri 2 	r is de�ned in thesame way as we did before; we just choose � = �, as the base of the logarithm. The index ofri is then, Ni = �o(ri).As we see from Figure 3.1, 	r can be structured as a lattice based on the relation <o. Foran ` loci representation, the depth of the diagram is always `. The lowest level at order `, the65
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relation divides the search space into singleton sets. Each of these singleton sets can be reachedin at most ` steps. However, the problem is that when o(ri) = O(`), Ni = O(2`). Here O isused to denote the order of complexity. Clearly, if we want to solve any arbitrary problem usinga `-loci sequence representation, in the worst case, the complexity is exponential.It will be interesting to know what classes of problems can be solved in polynomial samplecomplexity. In the following I de�ne a class of order k (a constant) delineable problems whichcan be solved in sample complexity polynomial in q, qr, 1=d�, 1=d�r, and the problem size `.De�nition 3 (Class of order k delineable problems) : Let us de�ne a subset of 	r con-taining every order-k relation as follows: 	fo(r)�kg = fri : o(ri) � k & ri 2 	rg. Fora given class comparison statistic Ti, a problem is order-k delineable if there exists a subset	0 � 	fo(r)�kg and at least one member of 	0 has an order equal to k, such that its every mem-ber, ri satis�es the delineation constraint with memory size Mi and the size of the intersectionset, G = [a1;a2;���ak\C[a1];iC[a2];i � � �C[ak];i;is bounded by a polynomial of `, �(`). Indices a1; a2; : : :ak can take any value in between 1 andMi.These are the problems that can be solved by considering at most order-k equivalencerelations and enumerating the intersection set G. If a problem is order-k delineable in thechosen representation, then once the good classes are detected within each of the relations in	0 , a simple intersection should give us a set of ground classes of size G. Since by de�nition thecardinality of this set is bounded by a polynomial in `, this set can be explicitly enumeratedto �nd the best solution among them. Since all the members in 	0 properly delineate thesearch space, the best solution of G is guaranteed to be the optimal solution. For this class ofproblems, the set of relations needed to solve is Sr � 	0 . Let us now �nd the bound on kSrk.The best case scenario is when Sr contains `=k non-overlapping relations. Since the problemis order-k delineable, there is at least one relation in Sr that has an order equal to k. In theworst case, there are only one order k relation and ` � k order one relation in Sr. Therefore,`=k � kSrk � ` � k + 1. The maximum possible index value of any relation in Sr is k�kk.Although Sr may need at most `� k + 1 number of relations, we do not need separate sample66
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sets for each of them. The structure of the relation space can be exploited to gain computationalbene�ts. The order-k relation need a sample set for explicit evaluation. The same sample setcan be used to evaluate other order one relations. This is basically what we discussed earlier asbene�ts of implicit parallelism. While solving this class of problem, the set Sr is not explicitlygiven. The search for Sr from the set 	fo(r)�kg requires evaluation of all relations of order lessthan k. Again the bene�ts of implicit parallelism can be exploited for this purpose. Therefore,the k relations along any one particular path from the top node of �gure 3.1 down to order-knode need explicit evaluations. Relations along the other paths from the top can be evaluatedusing the same sample set.To achieve an overall success probability of q, the computational complexity,SC � k�kkk log(1� � qqr � 1(`�k+1)(k�kk�Mmin) )�d� + �(`): (3.3)When q=qr << 1, this can be approximated as before,SC � k�kkk� qqr � 1(`�k+1)(k�kk�Mmin)d� + �(`)This says that for �xed k, the class of order-k delineable problems can be solved withcomplexity growing polynomially in q, 1=d�, and `.Since by de�nition Sr � 	fo(r)�kg, the search for appropriate relations is also restricted to	fo(r)�kg. The cardinality of 	fo(r)�kg isk	fo(r)�kgk = j=kXj=1 �j̀�< k�k̀�< k�ek̀ �k< (e`)kkk�1 : (3.4)67
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Inequalities 2.19 and 3.4 can be used to �nd the computational complexity in the relation spacefor this class of problems, nr > log(1� qkk�1=((`�k+1)(e`)k(1�
))r )�d�r : (3.5)This clearly shows that the computational complexity in the relation space is polynomial inqr , 1=dr. We shall also clearly demonstrate that it is polynomial in ` too. Note that �x1�x �log(1� x). Therefore,log(1� qkk�1=((`�k+1)(e`)k(1�
))r ) � �qkk�1=((`�k+1)(e`)k(1�
))r1� qkk�1=((`�k+1)(e`)k(1�
))r :For constant k and 
, this can be written aslog(1� qkk�1=((`�k+1)(e`)k(1�
))r ) � �qb=`vr1� qb=`vrwhere b and v are appropriate constants. Consider the ratio of this bound of the numerator ofinequality 3.5 and an exponential growth function a`, where a is a constant, and take the limitas `!1. lim`!1 �qb=`vra` 11� qb=`vr = 0This proves that the the expression in Inequality 3.5 is also polynomial in `.The following section considers the user's role in solving a BBO. I consider two primaryroles of the user regarding the source of relations and the interactions among the relations andthe search operators.3.6 De�ning The Relation SpaceIn the SEARCH framework an algorithm searches for appropriate relations. However, thisrequires �rst de�ning the relation space, in other words, the set of relations 	r. De�ning thissource of relations is one of the primary responsibilities of the user of a blackbox optimizationalgorithm. Doing so requires some understanding about what it means to be an appropriate68
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source of relations. The objective of this section is to discuss this, using the concepts developedearlier in this thesis.In section 3.6.1 I note at least three possible ways to de�ne relations over the search domain.Section 3.6.2 considers the issue regarding proper delineation. This is followed by Section 3.6.3which discusses the utility of the structure of the set of relations.3.6.1 De�ning relationsAs we noted repeatedly in the previous chapter, relations can be de�ned in many di�erent ways.Some of the possible ways could be1. representation,2. perturbation operators, and3. search heuristics.I discuss each of them briey in the following part of this section.Representation can be directly used to de�ne a similarity measure, and that can be exploitedto induce classes over the search domain. I already gave examples of such similarity measuresfor the sequence representation. Let us consider another example using a di�erent kind ofrepresentation|disjunctive normal form (DNF). This kind of representation is sometimes usedin machine learning. For the sake of simplicity, consider binary variables x1; x2; : : :xn. A k-DNFrepresentation is de�ned as follows:(x1 ^ x2 � � � ^ xk)_ (xk+1 ^ xk+2 � � � ^ xk+k) _ � � � _ (xn�k ^ xn�k+1 � � � ^ xn)Relations and classes can be de�ned using this representation in a way exactly similar to whatwe did in case of sequence representation. Replace some variables with the �xed positioncorresponding to which equivalence is to be de�ned and substitute the wild character for rest ofthe variables. For example, in 3-DNF representation, (f^f ^f)_(#^#^#)_� � �_(#^#^#)de�nes a relation. The classes within this relation can also be de�ned in a similar way, describedin the context of sequence representation.Perturbation operators can also be used to de�ne neighborhood and classes. In this ap-proach, a state, x and an operator de�ne a set of states that can be reached from state x by69
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applying the operator to it. This de�nes a class of states. Therefore, an operator can be usedto divide the search domain into a set of overlapping classes. Many search algorithms use thisapproach. Graph search algorithms like depth-�rst and breadth-�rst search (Rich & Knight,1991) are some examples that can be viewed from this angle. Simulated annealing can alsobe viewed from this perspective. Even GAs can also be viewed from this angle (Jones, 1995).Unfortunately, most of these algorithms consider very restricted sets of of �xed operators, inpractice it is often like|one algorithm, one operator. This may severaly constrain the relationspace of the algorithm.Search heuristics are another possible way to go. The basic idea is to use some a priorichosen rules for assigning a priority in the order di�erent regions of the search space is explored.The use of a heuristic rule can be illustrated using a simple example. Let h(x) be a heuristicrule that computes the set of states that satisfy the heuristic criterion, given that the currentstate is x. A heuristic-based algorithm computes h(x) and decides which state to visit next,based on heuristic decision. Clearly, such heuristics divide the search space into a set of classesbased on heuristic preferences. This approach is quite popular in the Arti�cial Intelligencecommunity, where sometimes it is taken to an extreme end. The need for �nding appropriaterelations is often replaced by assertions of relations using domain knowledge. Such extensivedomain knowledge is unlikely to be available in blackbox optimization problems. The �eld ofcombinatorial optimization also makes use of heuristics. For example many heuristics havebeen suggested for solving the traveling salesperson problem; the k-opt algorithm is one suchexample. A� (Hart, Nilson, & Raphael, 1968) algorithm is another example from the body ofgraph search algorithms. Just like the previous approach, heuristic based relations must satisfythe delineation requirement. Therefore, use of a set of heuristics is more appropriate and searchfor appropriate heuristics is essential.This section described three possible ways to de�ne relations. The following section considerswhat makes a set of relations appropriate.3.6.2 Proper delineationProper delineation of the search space is the most important requirement of a relation. Re-gardless of how the relations are de�ned, they need to satisfy this fundamental requirement.The greater the number of relations in 	r that satisfy this requirement, the better it is. I70
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Table 3.1: A trap (fd) and one-max (fe) function in 3-bit representation.x fd fe111 3 3110 0 2101 0 2011 0 2100 1 1001 1 1010 1 1000 2 0have explained these concepts in the previous chapter. In this section, I restrict myself onlyto illustrate the use of the delineation-ratio for quantifying the appropriatness of a source ofrelations using a simple example.Searching for relations that properly delineate the search space may not be that useful, inthe case that most of the relations in 	r de�ned by the chosen representation do not satisfy thisrequirement. Earlier in this chapter, I de�ned the delineation-ratio as the ratio of the numberof relations in 	r that properly delineates to the total number of relaions. For a given classcomparison statistic, memory size, and a BBO, the delineation-ratio reects how easy the searchfor better relation will be. Let us illustrate this observation by using the following example.Consider the two functions de�ned in Table 3.1. Function fd is a trap function (Ackley, 1987)in a deceptive representation (Goldberg, 1987), and fe is an one-max function. The one-maxfunction is known to be very easy to solve; on the other hand, the trap function o�ers agreat degree of di�culty to many algorithms beacuse of its isolation of the optimal solutionin the hamming space. Let us again consider class average as the comparison statistic. Thedelineation-ratio of fe and fd are 1 and 1=8, respectively. Although this is for a particular classcomparison statistic, the qualitative distinction is likely to be invariant for other reasonablestatistics.If the delineation-ratio is very small, then the representation is inappropriate, and we maybe better o� choosing a new representation. One possible way is to adaptively construct a newrepresentation that rede�nes 	r . 71
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The inequality bounding the sample complexity in SEARCH clearly tells us that the indexof a relation contributes to the sample complexity. The higher the value of the index, the largeris the required number of function evaluations. Therefore, it is computationally advantageousif the relations with low index, or low order, satisfy the delineation requirement.The following section reminds us that implicit parallelism should be given considerationwhile choosing the set of relations.3.6.3 Ordering the set of relationsEarlier in this chapter we noted one interesting possibility|implicit parallelism|that exploitsthe stucture of 	r when organized based on the order (log of the index) of the relations. Thisopens up the possibility of evaluating relations in parallel at no additional sample evaluationcost. This is another factor that should inuence the choice of the set of relations. Compu-tational bene�ts of implicit parallelism increase as the lattice formed by ordering 	r based onthe order becomes more bushy. This is a property of the chosen set of relations and it thereforedeserves due consideration.The following section considers the role of operator-representation interaction in SEARCH.3.7 Search Operators And RepresentationAlthough in some BBO algorithms, search operators may be used to de�ne the set of relations,generating new samples from the search space for evaluating classes is one of their main pur-poses. Since SEARCH treats relation and sample space as two seperate entities, in this sectionI shall focus only on the sample generation aspect.In SEARCH samples are always generated for some particular set of classes. A randomperturbation operator does not satisfy this requirement. This is discussed in Section 3.7.1. Oncethe ordering among the classes is constructed, and once seemingly bad classes are rejected withacceptable level of con�dence, there is no reason to generate samples for them again. Therefore,the perturbation operators need to follow the decisions made earlier. This is discussed in Section3.7.2. 72



www.manaraa.com

3.7.1 Sample generation for equivalence classesAs I just said, the primary objective of a search operator is to generate new samples. Whydoes a search algorithm need new samples? The perspective of the search, as an orderingprocess among equivalence classes, says that we need new samples in order to compute theclass comparison statistic. Therefore, an algorithm does not just need any sample, that asample from some particular class. To accomplish this, the perturbation operators should betold about the class for which the sample is needed. Clearly, a random perturbation operatorfalls short of requirements.Consider an example. To evaluate the class 11##, only those samples that have two consec-utive 1s in �rst two bit positions are needed. Similarly for evaluating 1##1, we need sampleswith 1s in the �rst and last bit positions. Clearly the search operators need to know what classis currently under evaluation. It should accordingly change its region of perturbation. In otherwords, the search operators need to be adaptive to the direction of the search process. A littlemore thought should make it clear that what we are really talking about is adaptive operator-representation interaction. Sample generation for speci�c classes can also be accomplished witha non-adaptive search operator when representation itself is adaptive. A simple example mayclear up the rationale behind this argument. Consider a 4-bit binary representation and a per-turbation operator which generates new samples by randomly changing the third and fourthbit values. Such an operator could never generate samples from class ##11. Now consider a 4position representation in which every position has a data structure, which in turn comprisesa tuple (locus; value). The data locus tells the position where value should be placed in a se-quence. For example, [(3; 0)(0; 1)(2; 0)(1; 1)] can be interpreted to the binary string 1100. Nowlet us reconsider the same search operator that generates samples by perturbing only the thirdand fourth positions. In the new representation scheme, the sample generation of class ##11is quite straightforward, since locus is explicitly tagged with a value. The class ##11 can berepresented as [(3; 1)(2; 1)##] or [(2; 1)(3; 1)##]. This simple example illustrates that non-adaptive search operators can also serve the purpose, provided that the representation itself isadaptive. This section noted that the representation-operator interaction needs to be adaptiveto ensure proper sample generation. The following section points out that the perturbation73
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Figure 3.2: E�ect of low-order equivalence class pruning on future exploration. The classesmarked by circles need not be considered.operators need to be controlled to ensure that they do not generate samples for the classes thatare already discarded.3.7.2 Controlling the perturbationBetter control of operator perturbation is also needed for another reason. Consider thesubgraph shown in Figure 3.2. Let us say that the class ##0# is evaluated to be worse thanother order one classes of relation ##f# and that it is eliminated from further consideration;also assume that the class ###0 is rejected. This essentially means that all higher-orderequivalence classes such as #10#, and #00#, which are subsumed by the class ##0#, canalso be pruned out. Moreover, since ###0 is already pruned out, the samples generatedfor evaluating classes #11# and #01# should be restricted from being a member of ###0.The search operators need to keep track of the equivalence classes that are eliminated andaccordingly adapt themselves to generate appropriate samples. Again, a simple randomizedperturbation operator does not satisfy this requirement. Radcli�e (1993) discussed this desirablefeature of the perturbation operator in details.The following section summarizes the major points of this chapter.3.8 SummaryThis chapter laid out the basic principles for understanding the three major entities in BBO,74
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� search algorithm� problem� user's role in de�ning the set of relationsThe main points of this chapter are recapitulated in the following.First we de�ned what it means to be an algorithm in SEARCH. Di�erent components thatare required for solving a BBO problem in SEARCH are listed together and discussed. I hopethis will provide a common ground for developing new blackbox optimization algorithms inthe future. Before designing any new algorithm, we should ask several questions: how doesthis algorithm process relations? How does it treat the classes? Does the operator for samplegeneration follow the decision making in the relation and class spaces? What are the relationand class comparison statistics? How does it take advantage of implicit parallelism?Next, I discussed two important issues that may help make a BBO algorithm computation-ally more e�cient. It is also noted that the index of the relation considered in the beginning ofthe search process should be bounded by a constant. The smaller the constant, the better it is.This requirement is called bottom-up organization of search, which may have some biologicalcon�rmation. It is noted that parallel evaluation of di�erent relations at no additional functionevaluation is possible by exploiting the structural property of the set of relations, when orderedbased on the order of relations. I identi�ed this as implicit parallelism (Holland, 1975).This chapter also rigorously de�ned problem di�culty in SEARCH. The notion of problemdi�culty introduced here is philosophically very similar to the PAC-learning theory (Natarajan,91). The SEARCH framework decouples problem di�culty along these dimensions:1. problem size2. success probability in making the right decision to choose a relation that properly delin-eates the search space3. success probability in selecting the class containing the optimal solution4. desired quality of relations and the solutionAll of the above dimensions of di�culty, except problem size, came as a part of the developmentof SEARCH. Identifying the exact quantitative dependence upon the problem size requires75
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relating the size of the set of relations with problem size. I therefore considered a sequencerepresentation as the source of relations and introduced the class of order-k delineable problemsthat can be solved in polynomial sample complexity. This class of problems will be furtherexplored in the coming chapters.The primary roles of the user of a BBO algorithm are to de�ne the set of relations andto choose the perturbation operators based on the chosen set of relations. I �rst note threeof the many possible ways to de�ne relations over the search domain. The appropriateness ofa set of relations is quanti�ed in terms of the delineation-ratio. Computational bene�ts canbe achieved by choosing a set of relations in which low-order relations satisfy the delineationrequirement and also parallel evaluation of relations is possible by exploiting the structure of	r when organized based on the order of the relations. All these factors contribute to thee�cacy of the set of relations. At the end, the role of perturbation operators is viewed from therelation construction perspective. Perturbation operators need to generate samples for thoseclasses that are currently being evaluated. Therefore, search operators clearly need to knowabout the classes for which they are going to generate the samples.The SEARCH framework and its implications o�ered an alternate perspective of di�erentcomponents of BBO. One of the main lessons of this framework is that the search for appropriaterelations is essential in BBO. In the following chapter I consider messy genetic algorithms, oneamong the rare class of algorithms that searches for appropriate relations.
76
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Chapter 4Design of the Fast Messy GeneticAlgorithmThe previous chapters introduced SEARCH|an alternate perspective toward BBO based onrelations and classes|and its implications toward BBO problem solving. SEARCH emphasizesthe need for searching for appropriate relations, since considering relations is essential to surpassthe limits of enumerative search. Unfortunately, not many blackbox optimization algorithmsrealize this. In this chapter, I consider a rare class of algorithms that realize the need forrelation search, known as messy genetic algorithms (Deb, 1991; Goldberg, Korb, & Deb, 1989),Historically, messy GAs came before the development of SEARCH, and therefore, messy GAsdeserve the credit for the �rst step toward the right direction.Messy GAs are a new generation of genetic algorithms that originated from the lessonslearned from simple genetic algorithms (De Jong, 1975; Holland, 1975). Among others, poorsearch for relations is one of the main weaknesses of the simple GA. Section 4.1 discusses thestrengths and weaknesses of simple GAs. Section 4.2 presents a brief review of the originalversion of the messy GA (Deb, 1991; Goldberg, Korb, & Deb, 1989). Although the originalmessy GA realized the role of the search for relations, one of the major problems of the originalmessy GA was its inability to take advantage of implicit parallelism. The fast messy GA(Goldberg, Deb, Kargupta, & Harik, 1993) was introduced to eliminate this bottleneck. Thefast messy GA (fmGA) replaces the explicit evaluation of equivalence classes by a partiallyimplicit evaluation that makes it computationally more e�cient. Section 4.3 presents the design77
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of the fast messy GA. The choice of thresholding parameter during the building-block1 �lteringprocess plays a crucial role in the success of fmGA. The approach suggested by Goldberg,Deb, Kargupta, and Harik (1993) for designing a �ltering schedule may create some problemsin maintaining even growth of building-blocks during the late stages of the �ltering process.A modi�ed scheme for thresholding selection and iterative applications are added to improveits performance. Section 4.4 describes them. A detailed description of the new thresholdingscheme is presented in Appendix C. The overall organization of the modi�ed fmGA is describedin Section 4.5. Finally, Section 4.6 discusses the main conceptual strengths of the fmGA andpoints out directions for further improvements.4.1 Lessons from the Simple GAGenetic algorithms (GAs) (Holland, 1975) are stochastic search procedures based on simpli-�ed mechanics of natural genetics. Although the actual algorithms within this family vary indi�erent aspects, the simple genetic algorithm (sGA) (De Jong, 1975; Holland, 1975) capturesthe essence of the GA proposed by Holland. A brief description of simple GA can be found inAppendix B. Although the algorithmic implementation of the sGA is very simple, it is quiteinteresting to note that the fundamental motivations (Holland, 1975) behind designing thesGA share some common grounds with SEARCH. The �rst part of this section addresses somestrengths of the sGA and the latter half points out the major bottlenecks.The simple GA has many interesting features. The main strengths of the simple GA canbe listed as follows:1. It is possible to de�ne a richer source of relations through representation.2. Implicit parallel evaluations of relations can be attained.3. Crossover does not change the decision made by selection for order-1 relations and it canbe made more faithful to the decision of selection for higher order relations (Radcli�e,1991).Each of these points will be briey discussed in the following.1A building-block is an instance of a class within the top Mi classes of a relation ri that properly delineatesthe search space. 78
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The �rst important aspect is that GA emphasizes the role of representation in search thatcan be used to de�ne a rich source of relations. From the very beginning, the design of GAshas been primarily viewed in the light of the schema or equivalence class processing within thepartitions or relations de�ned by the chosen representation. Although the simple GA does notexplicitly consider the relations and classes, the fundamental motivation shares the spirit ofSEARCH.Probably one of the most interesting observations that Holland made in his book (1975) isthe idea of implicit parallelism. He pointed out that by processing a population of size n, theGA gathers information about O(n3) schemata. Although this argument was not rigorouslylaid in terms of computational arguments, the SEARCH framework identi�es and con�rms theconcept in a quantitative manner. As I noted in the previous chapters, as long as the poset(	r)<o is not linearly ordered, the parallel structure can be exploited to evaluate di�erentrelations simultaneously from the same set of samples. The computational bene�ts from theparallel evaluations of relations have been identi�ed as the bene�ts of implicit parallelism.The crossover operator in GA o�ers some unique features. Unlike the random mutativeperturbation operators, crossover has some degree of capability to control the perturbation. Ifan order-1 class is eliminated from the population by selection, crossover never regenerates thatclass. Since crossover just swaps values at di�erent loci, it cannot alter the overall distributionof the di�erent values at any locus. In other words, crossover respects the decision making atthe order-1 level by the selection operator. Unfortunately, this not true for higher-order rela-tions. Radcli�e (1993) discussed related issues in details and suggested principles for designingmore \respectful" crossover operators. Apart from this, we also noted that SEARCH requiresresolution of relations that becomes computationally useful for problems that are delineable ata certain level. Crossover can also be considered as an operator that generates samples froman intersection set of di�erent equivalence classes.Despite these interesting features, the simple GA has several major problems. The mainbottlenecks of the simple GA are as follows:� Relation, class, and sample spaces are combined.� A lack of precise mechanism for implicit parallelism occurs.� Only a poor search for relations can occur.79
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Each of these points will be discussed in the following.Since the relation, class, and sample spaces are combined, decision making in each of thesespaces a�ect the other two. Only one common measure de�ned by selection is used to decidein both the relation and class spaces. Although the roles of each of these spaces in BBO arerelated, the decision makings in each of them are distinctly di�erent. As a result, the overalldecision making process becomes noisy and susceptible to error. The sGA does not have anyway to explicitly decide about relations or classes without a�ecting the other spaces.The simple GA considers only a small fraction of relations de�ned by the representation. Asimple GA with one-point crossover (De Jong, 1975) favors those relations in which positionsin sequence space de�ning equivalence are closer to each other and neglects those relations thatcontain equivalence de�ning positions far apart. One-point crossover also fails to generate sam-ples for the intersection set of two equivalence classes in which �xed bits are widely separated.For example, in a 20-bit problem, single-point crossover is very unlikely to generate a samplefrom the intersection set of 1## � � �#(�rst bit is �xed) and # � � �#1 (last bit is �xed). Inbiological jargon, this is called the linkage problem. Unfortunately, this is a major bottleneck ofsGA. Although Holland (1975) realized the importance of solving this problem and suggesteduse of the inversion operator (Holland, 1975), it has been shown elsewhere (Goldberg & Lin-gle, 1985) that inversion is very slow and unlikely to solve this problem e�ciently. One-pointcrossover is not the only type to su�er from this problem. Uniform crossover is another kindof crossover (Syswerda, 1989) often used in the simple GA. In uniform crossover, the exchangeof bit values among the two parent strings takes place based on a randomly generated binarymask string. If the value of this mask string at a particular locus is 1, the corresponding bits inthe parent strings get exchanged; otherwise they do not. Unlike one-point crossover, uniformcrossover does not have any preference bias toward the closely spaced partitions. Since therelation space and the sample space are combined, random perturbation of the sample stringsalso result in disrupting proper evaluations of the relations. Uniform crossover should also failto accomplish proper search in the relation space. In fact, this is exactly what Thierens andGoldberg (1993) reported. Their analysis and experimental results showed that the samplecomplexity grows exponentially with the problem size for solving bounded deceptive problems(Thierens & Goldberg, 1993) using a simple GA with uniform crossover.80
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This discussion clearly points out that the search in the relation space is very poor in thecase of a simple GA with either one-point or uniform crossover.In the following section I discuss the messy genetic algorithm (Deb, 1991; Goldberg, Korb,& Deb, 1989) that made serious e�orts to eliminate one of the major bottlenecks of the simpleGA|poor search for relations.4.2 Messy Genetic Algorithms: A ReviewMessy GAs (mGAs) are a class of iterative optimization algorithms that make use of a localsearch template, adaptive representation, and a decision theoretic sampling strategy. The workon messy genetic algorithms (mGAs) (Deb, 1991; Goldberg, Korb, & Deb, 1989; Goldberg &Kerzic, 1990; Goldberg, Deb, & Korb, 1990b) was initiated to eliminate some major problemsof the simple GA, as described in the previous section. The main strong points of mGAs arelisted in the following:� The mGA eliminates the undesirable bias of sGA toward those relations that have all oftheir equivalence de�ning positions close together.� It adaptively modi�es the representation-operator interaction;� It precisely evaluates the equivalence classes.The search for good relations is highly restricted in the sGA. The mGA addresses this bot-tleneck of the sGA. The messy GA uses a relaxed, variable locus representation to solve thelinkage problem. Precise evaluation of equivalence classes is also emphasized in the mGA.To keep things simple and well-grounded, the original mGA adopted an explicit enumerationtechnique for evaluating the equivalence classes. This, of course, sacri�ced all the bene�ts ofimplicit parallelism. Construction of partial ordering among the equivalence classes is, again,an important issue that the mGA took quite seriously.This section reviews di�erent aspects of the original version of messy GA (Deb, 1991). Sub-section 4.2.1 discusses the representation in mGA. Equivalence classes are explicitly enumeratedand evaluated in the context of a template. Subsection 4.2.1 reviews this. Subsection 4.2.2 dis-cusses the messy GA operators. Thereafter, Subsection 4.2.3 describes the overall organizationof the mGA. Finally, Subsection 4.2.4 discusses some strong and weak points of the mGA.81
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4.2.1 RepresentationThe messy GAs relax the de�nition of representation used in the simple GA. Unlike the simpleGA, mGAs de�ne the chromosome, i.e., the sequence-represented members of the populationas a collection of position-independent genes. A single gene is an ordered pair, (locus, value);in a `-loci representation, the locus can be any value between zero and ` � 1, and value isany letter from the chosen alphabet. The locus identi�es the actual position of the gene. Forexample, consider a problem of length ` = 3. A sample messy string for this problem could be((0 1)(2 0)(1 1)). This corresponds to the string 110 in a �xed-locus representation of the simpleGA. Although mGAs allow redundant and missing genes, the representation in mGAs is richerthan that of simple sequence representation even without considering them. Considering onlythe �nal encoded string ready for evaluation, representation in mGA can be formally denotedas Im : X ! S` � �`;where S` is the set of all di�erent permutations of integers zero through `�1. Note that the samemember of X can be represented in di�erent ways in this representation. To be speci�c, everymember of X has `! distinct representations. This gives the mGAs an additional advantagein searching for proper equivalence relations. Since the locus of a gene is explicitly speci�ed,related genes can be adaptively clustered during the search to minimize the e�ect of operatordisruption.Another interesting aspect of the mGA is that it explicitly represents equivalence classes.Every member of the mGA population represents an equivalence class of certain order. Unlikethe GA, where a population is comprised of only order-` classes, i.e., the ground members, mGAstrings can be of any arbitrary non-zero order. The messy GA strings can be underspeci�edor overspeci�ed. For example, both ((0 1)(2 0)(1 1)(2 1)) and ((0 1)(2 1)) are valid messystrings for a problem of length ` = 3. The �rst string is overspeci�ed, whereas the second isunderspeci�ed. Overspeci�ed strings are mapped to �` by left-to-right scanning of the stringson the basis of �rst-come �rst-served preference. On the other hand, an underspeci�ed stringof length k de�nes an equivalence class of order-k.82



www.manaraa.com

Equivalence classes are explicitly represented by underspeci�ed strings. Underspeci�cationis handled using a local search template string. A local search template is a locally optimalstring that remains unchanged during a particular iteration of the messy GA. Evaluations ofequivalence classes are performed in the context of this search template. The template has all ofits genes speci�ed. The missing genes of an underspeci�ed string are �lled in by the template.In our example problem, a template may resemble ((0 1)(1 0)(2 0)). The incompletely speci�edstring ((0 1)(2 1)) can be evaluated in the context of this template. The missing gene is �lledby the template, resulting in string ((0 1)(1 0)(2 1)).The following section reviews the mGA operators.4.2.2 Messy operatorsThe messy GA uses two main operators: (1) thresholding selection and (2) the cut and spliceoperator. Thresholding selection constructs the ordering between the equivalence classes andgives more copies to the underspeci�ed strings representing the better classes. On the otherhand, the cut and splice operators are used to construct the intersection among the equivalenceclasses. In the following discussion, I briey describe the working of these two operators.4.2.2.1 Thresholding selectionSelection generates more copies of the strings with higher objective function values. In atournament selection (Brindle, 1981; Goldberg, Korb, & Deb, 1989), construction of the order-ing among the equivalence classes is accomplished by pairwise comparison of class members.Thresholding selection tries to ensure that only classes belonging to a particular equivalencerelation are compared with one another. Consider the strings ((1 0)(0 0)), ((1 1)(0 1)), and((1 0)(2 1)). The �rst two strings de�ne equivalence classes 00#, 11# over the relation ff#.On the other hand, the last string de�nes the class #01 over the relation #ff . Clearly, com-paring the �rst two makes sense, because they are from the same relation; on the other hand,the last string must be restricted from competing with the other two strings, since it belongs toa di�erent relation. Thresholding selection tries to accomplish exactly this, aside from the dutyof selecting better strings. A similarity measure � is used to denote the number of commongenes among two strings. Two strings are allowed to compete with each other only if their � isgreater than some threshold value �. The messy GA (Deb, 1991) used � = `1`2=`, where `1; `2,83
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Figure 4.1: Cut operation.
Figure 4.2: Splice operation.and ` are the length of the two strings and the problem length, respectively. This expression isthe expected value of � when the two strings are randomly picked from a randomly initializedpopulation (Deb, 1991). Thersholding selection basically implements a relaxed version of theclass comparison process within a particular relation.The following subsection reviews the cut and splice operators in the messy GA.4.2.2.2 Cut and Splice operationThe cut and splice operation simulates the behavior of crossover for di�erent length strings.Consider the strings ((1 1)(0 1)(2 0)) and ((2 1)(1 0)(0 1)(2 1)). The cut operation randomlypicks two points, one for each string. Let us say that it picks 2 and 3 for the �rst and secondstring, respectively. The cut operation then splits the �rst string into ((1 1)(0 1)) and ((2 0)).84
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The second string is also divided into the strings ((2 1)(1 0)(0 1)) and ((2 1)). The spliceoperation swaps the split parts and generates new strings. In the current example, spliceoperation generates the strings ((1 1)(0 1)(2 1)) and ((2 1)(1 0)(0 1)(2 0)). Figures 4.1 and 4.2graphically depict the operation of cut and splice operators, respectively.The following subsection describes the overall organization of the messy GA.4.2.3 Organization of the messy GAThe messy GA works by iterating within two loops|the outer and inner loops. The variableof the outer loop is the order of the equivalence relations considered. The inner loop constructsthe ordering among the equivalence classes of di�erent relations of the same order and producesa locally optimal solution by taking the intersection of the good equivalence classes using thecut and splice operations.Table 4.3 presents pseudo-code explaining the operation of the mGA. In the following dis-cussion I explain the overall working procedure of the mGA.� Outer loop begins: The outer loop iterates over the order of equivalence relation k. Atthe initial iteration of the outer loop, k may be chosen as 1 if no other prior informationis available. Initially, the template is randomly generated.� Inner loop:1. Initialization: The population is randomly initialized with each string of lengthk, where k is the order of the currently considered equivalence relations. Preciselyspeaking, the initialization of the messy population is not exactly random. Rather, itmakes sure that all 2k�k̀� di�erent possible order-k equivalence classes are present inthe initial population. The objective function value of all these strings are evaluatedin the context of the template.2. Primordial phase: The primordial phase constructs the ordering among the equiv-alence classes by applying thresholding selection alone. A binary tournament selec-tion operator (Brindle, 1981; Goldberg, Korb, & Deb, 1989) gives on average twocopies of the best string. Often, this results in continuing the primordial phase forseveral generations. No function evaluation is performed during this phase.85
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/* Initialization */level = 1; template = random string; // Random initialization of the templateWhile(mga termination criterion == TRUE) )f t = 0; // Set the generation number to zero.Initialize(Pop(t), level); // Initialize the population at randomEvaluate(Pop(t), template); // Evaluate the fitness valuesRepeat // Enter primordial phasef Selection(Pop(t)); // Select better stringsEvaluate(Pop(t)); // Evaluate fitnesst = t + 1; // Increment generation countergUntil (primordial termination criterion == TRUE)t = 0;Repeat // Enter juxtapositional phasef Selection(Pop(t)); Cut and Splice(Pop(t)); // Apply cut and splice operatorMutation(Pop(t)); // Apply mutationEvaluate(Pop(t), template);t = t + 1;gUntil ( juxtapositional termination criterion == TRUE)template = optimal string(Pop(t), level); // template remains locally optimallevel = level + 1;g Figure 4.3: A pseudo-code for original version of the messy GA.
86
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3. Juxtapositional phase: During this phase both thresholding selection and cut-&-splice operators are used. Good strings are picked, cut, and then spliced to generatebetter strings. Since new strings are generated during this phase, evaluation of theobjective function values is required in every generation.4. Inner loop ends: The template is set to the best solution found at the end of thejuxtapositional stage of the previous iteration of the inner loop.� Outer loop ends. The algorithm stops when the order of relations considered exceedsa certain value or some other stopping criterion is satis�ed.The following section summarizes the strengths and weaknesses of the mGA.4.2.4 Lessons from the mGAThe messy GA took the �rst step in the right direction. It realized the need for searching ap-propriate relations. Explicit enumeration of equivalence classes and selection in the presence ofthresholding aid precise evaluation and ordering of classes. This made the messy GA applicableto a larger class of problems, compared to sGA. The messy GA has been applied to di�erentkinds of problems, including several real-life applications (Deb, 1991; Dymek, 1992; Merkle &Lemont, 1993). The main strong aspects of the messy GA are listed in the following:1. It decomposes of the search space into two di�erent spaces|(1) the sample space and (2)the class and relation space.2. Less noisy decision making occurs compared to the simple GA because of this decompo-sition.3. A better search for relations occurs.Each of these points will be briey discussed here.The messy GA considers two distinctly di�erent spaces|the population of strings and thetemplate space. During the primordial stage every string in the string population has a lengthless than the problem length. Each of them de�nes an equivalence class. Therefore, duringthe primordial stage the string population represents the class space. On the other hand, thetemplate is always a full string, and this de�nes the sample space in the mGA. During the87
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juxtapositional stage, however, the strings in the population become larger and gradually startbecoming full strings. The string population can still be viewed as the class space, preciselythe space of classes for order-` relations, where ` is the problem length.Since the main decision making in the mGA is made during the primordial stage, decompo-sition of the search into class and sample spaces makes the decision making less noisy comparedto that of the sGA. The mGA uses an explicit enumerative initialization of the population.This makes the decision making more accurate.One of the most important aspects of the mGA is that it realizes the importance for �ndingappropriate relations. Unlike the sGA, the search for proper relation in the mGA is moreaccurate and less susceptible to error because of the explicit enumeration and the use of alocally optimal template for class evaluations.Despite these interesting features, the original mGA has some problems:1. decomposition of the search space2. single local search template3. lack of implicit parallelismI discuss each of them in the following.The mGA takes one step ahead by decomposing the sample space from the relation andclass spaces. However, further decomposition may be necessary. The rationale behind thisobservation originates from the role of thresholding selection in mGA. Thresholding selectiontries to �nd the better classes and also the better relations. The thresholding parameter isalways chosen less than the string length for allowing the elimination of bad relations. However,since the relations and classes are implicitly de�ned in the string population, the constructionof ordering among relations inuences that among the classes. For example, when thresholdingparameter � = 2 for a 4-bit problem, strings like ((0 1)(2 1)(1 1)) and ((0 1)(2 1)(3 0))compete with each other. Although the idea is to eliminate bad relations, physically this meanscomparing classes from di�erent relations, which is inappropriate. The undesirable consequenceof this is that it also allows competition among classes from good relations. This needs furtherstudy and experimentation.By de�nition, the class comparison statistic of any algorithm is chosen in an ad hoc manner.It is a source of algorithmic bias. It is the particular aspect of an algorithm that may make88
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a class of problems either easy or di�cult for itself. The messy GA is no exception to that.Unlike sGA, in the messy GA, the population of strings explicitly represents the class space.The template de�nes the sample space. Although the template is by de�nition a locally optimalsolution, at least in the initial stage, at the order-1 level of outer loop the template is randomlygenerated. It is not clear how general the idea of comparing two classes based on a single sampleis. The messy GA explicitly enumerates the 2k�k̀� order-k equivalence classes and evaluatesall of them. As we noted in Section 3, parallel evaluation of di�erent equivalence relations canbe done at the cost of evaluating one relation. The messy GA does not take advantage of thispossibility at all. On the other hand, the simple GA takes advantage of this at the price ofhigh noise during evaluation of the classes. This lack of implicit parallelism is a major problemof the messy GA. Although the sample complexity is still polynomial, for problems with evena moderate order of decomposability, the population size becomes very large for any practicalpurpose.Among the above three, lack of implicit parallelism is the main computational bottleneckof the original messy GA. The following section introduces the fast messy GA that preservesthe mGA's search for good relations but returns some of the bene�ts of implicit parallelism.4.3 The Fast Messy Genetic AlgorithmThe simple GA harnesses the power of implicit parallelism, but at a higher price of noisy eval-uation of equivalence classes. The sGA assigns credit at the string level, and the evaluation ofclasses is completely implicit. The original messy GA went to the other extreme. It emphasizedthe accurate evaluation of better classes by explicitly enumerating all-possible classes withinthe all possible relations at some order-k and evaluating them in the context of a locally optimalsolution. The fast messy GA (fmGA), initiated by Goldberg, Deb, Kargupta, and Harik (1993),takes a moderate strategy to balance both the ends.The fmGA brings some of the bene�ts of implicit parallelism to the mGAs while retainingsome degree of accuracy in detecting good relations. An earlier work (Goldberg, Korb, &Deb, 1989) reported discouraging results for overcoming this bottleneck. However, the fmGAovercame this problem of the mGA using the following techniques:89
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1. probabilistically complete initialization2. building-block �ltering in presence of thresholding selectionThe probabilistically complete initialization replaces the explicit enumerative evaluation of all�k�k̀� classes. The modi�ed population-sizing becomes O(`). The basic idea is to statisticallygather information about order-k equivalence classes by evaluating some order-`0 classes, wherek � `0 � `.The building-block �ltering in presence of thresholding selection o�ers a way to use theprimordial stage for gradually detecting the order-k classes from strings of length `0. Duringthis phase, strings are selected in presence of thresholding and genes are occasionally randomlydeleted for reducing the string length from `0 to k.The objective of this section is to present a detailed description of the fmGA. Section 4.3.1discusses the probabilistically complete initialization technique that ensures proper decision-making by selection. Section 4.3.2 describes thresholding selection. The fast messy GA gradu-ally reduces the string length using thresholding selection and random gene deletion. Section4.3.3 describes the string length reduction process.4.3.1 Probabilistically complete initializationIn the original messy GA, all the order-k equivalence classes are explicitly enumerated. Thisinitialization is deterministic. The fast messy GA replaces this with a probabilistic technique.Initial string length `0 and the population size are the two design factors of the initializationprocess.The basic idea behind the probabilistically complete initialization is that all the 2k�k̀�equivalence classes can be de�ned using a much smaller number of strings, when the stringlength is much higher than k. In other words, multiple combinations of classes can be de�nedby the same string. The number of ways a string of size `0 > k contains a gene combination ofsize k may be calculated by assigning k genes to the string and then choosing the total numberways `0 � k genes can be created from ` � k genes. This is simply �`�k`0�k�. Note that the totalnumber of strings of size `0 created with ` genes is �`̀0�. Thus if we take ng = �`̀0�=�`�k`0�k�string samples each of length `0 randomly, on average there will be one string that will have the90
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Figure 4.4: The population size required to have one expected instance of a building block ofsize k in strings of length `0 is plotted against `0. The problem size ` = 20 is assumed (from[Goldberg, Deb, Kargupta, Harik, 1993]).desired gene combination of size k; ng decreases exponentially as the string length `0 increases.Figure 4.4 shows the variation of ng versus `0. When `0 � `, ng is a constant.Detecting order-k building-blocks from strings of length `0 >> k requires several samplestrings that contain the building-blocks. This is essentially a decision problem. Goldberg, Deb,and Clark (1992) proposed a parametric decision theoretic approach to choose a sample sizethat ensures that the building-blocks are detected with high con�dence. They proposed thepopulation-sizing equation na = 2c(�)�2(m� 1)2k;wherem is the number of subfunctions and c(�) is the square of the ordinate of a normal randomdeviate whose tail has an error probability �; c(�) will be denoted by c in short. � is the ratioof the variance and mean of the convolution of the distribution of the two competing classes(Goldberg, Deb, & Clark, 1992). The overall population size can be computed by multiplying91
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ng and na: n = ngna= �`̀0��`�k`0�k�2c�2(m� 1)2k: (4.1)The choice of `0 can be viewed as a trade-o� between reduction in population size andincrease in error probability. As `0 is increased, ng decreases quickly, but error probabilityincreases, since additional noise is introduced by additional bits. For all the experimentalresults presented in this chapter, I used `0 = `� k.This probabilistically complete initialization process makes sure that all the order-k classesare present in the initial population and they can be detected with high probability. Thresh-olding selection increases the proportion of good classes. The following section discusses thedesign of thresholding selection in the fmGA.4.3.2 Thresholding selectionThresholding selection is a selection operator that minimizes the competition among classesfrom di�erent relations. In this section, I describe the design of this operator in the fmGA.Ordinary selection gives more copies to the better string. This, however, cannot restrictcompetition among classes that do not belong to the same equivalence relation. Thresholdingselection is a kind of selection that restricts such undesirable competition. The thresholdingselection (Deb, 1991) is based on the tournament selection (Brindle, 1981; Goldberg, Korb,& Deb, 1989). In the binary tournament selection, population members are ordered by pair-wise comparison. Two members are randomly picked from the population and their objectivefunction values are compared with each other. The winner gets a copy in the next generationpopulation. On average, the best member of the population gets two copies in every gener-ation. Thresholding selection restricts the way members are picked from the population. Ina binary thresholding selection, the �rst competitor is picked up randomly. The next com-petitor is the �rst randomly-picked string from the population that has a certain threshold,� number of genes in common with the previous string. For example, consider a problem oflength ` = 10. Let us say that the �rst candidate is the string ((0 1)(3 1)(5 0)(2 1)). If the92
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chosen threshold parameter � = 4, then the string ((4 1)(3 1)(7 0)(5 1)) cannot compete withit; ((3 0)(2 0)(0 0)(5 0)) can however, since it has 4 common genes with the �rst competitor.When � is equal to the string length, only the classes that belong to a particular relation cancompete with each other. Ideally this should be what we want. However there is anotherissue|the search for appropriate relations. As we know in a sequence space of ` genes �k̀�di�erent order-k equivalence relations can be de�ned. The reader may recall from a previoussection that the probabilistically complete initialization of the fmGA generates classes for allpossible order-k combinations. In other words, the initial population contains classes from allpossible order-k equivalence relations. However, for any problem, it is likely that some relationsdelineate the search space properly and some of them do not. The undesirable relations needto be eliminated from future considerations. The fast messy GA tries to accomplish that byallowing slight competition among the classes created by di�erent relations. This is done bymaking the thresholding parameter � less than the current string length. The idea is that thisrelaxation will introduce competition among classes belonging to relations which share somecommon genes. Such competition can eliminate the classes of bad relations. When � is madeless than the string length, the set of equivalence relations is divided into di�erent overlappingsubsets. In the previous example, if we make � = 3, then the string ((0 1)(3 1)(5 0)(2 1)) canmatch with classes of other relations, such as ((0 1)(3 1)(7 0)(2 0)).The question is, How much should we relax the value of �? Deb (1991) noted that in arandomly generated population, the probability that a randomly chosen string is also a memberof the thresholding niche of a di�erent class follows hypergeometric distribution. He computedthe expected number of common genes between two randomly chosen strings of length `1 and`2 as � = `1`2` ; (4.2)where ` is the original problem length. Using � worked �ne with the original messy GA. However,in the fmGA, the string length is gradually reduced from `0 to order-k. As the selection is appliedto the population, the number of members of a thresholding niche drastically changes. Fromour experiments it was clear that a choice of � = `1`2` is too relaxed when ` >> `1; `2 >> k.This resulted in large amount of cross-competition among the classes and elimination of some93
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good classes. A conservative value for � can be chosen following the studies of Goldberg, Deb,Kargupta, and Harik (1993). They suggested using,� = d`1`2` + c0(�0)�e; (4:3)where � is the standard deviation of the number of genes two randomly chosen strings ofpossibly di�ering lengths have in common, and the parameter c0(�0) is simply the ordinate ofa one-sided normal distribution with tail probability �. The variance of the hypergeometricdistribution may be calculated as follows (Deb, 1991):�2 = `1(`� `1)`2(`� `2)`2(`� 1) : (4:4)implementation of thresholding selection searching for a competitor that has at least � genesin common with the string picked �rst. Strings from the population are randomly pickedand checked for matching. If a match is found, the process stops, and a tournament amongthem takes place. Otherwise, the search for a match continues for a certain number of times,ns = �sn, where �s is a constant between 0 and 1 and n is the population size; ns is called theshu�e number.However, even this approach does not solve the problem completely. Addressing this issuerequires a more fundamental approach toward understanding the thresholding process. Section4.4.1 sketches an alternate approach to design the �ltering schedule. However, before we discussthat, it is essential that we �rst understand the process of string length reduction in fmGA.This is described in the following section.4.3.3 Building-Block �lteringDuring the primordial phase of fmGA, thresholding selection increases the proportion of thebetter strings. However, in addition to that, the string length needs to be gradually reducedto order-k. At this stage, order-k classes can be accurately evaluated in the context of thecommon template, just as it is done in the messy GA. Gradual reduction of string lengthis accomplished by random deletion of genes. This process of detecting the good classes bythresholding selection and gene deletion is called building-block �ltering. In this section I94
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describe the design of building-block �ltering process in fmGA as suggested by Goldberg, Deb,Kargupta, and Harik (1993).Reduction of string length by random gene deletion is a straightforward concept. Let us�rst introduce some symbols. Consider the sequences of string lengths generated by successiveapplications of gene deletion by �(0); �(1); : : :�(i) : : :�(N ). The initial string length �(0) = `0and the �nal string length �(N ) are chosen to be some number close to k. Selection continuesfor some number of generations with constant string length �(i) to produce more copies of thebetter strings. Note that these are selection-only generations and therefore no new functionevaluation is needed. This is followed by random deletion of genes which reduce the stringlength to �(i+1). These shorter strings are then evaluated and the same process of thresholdingselection and gene deletion continues until �(i) = �(N ).The gene deletion rate should be chosen so that it is on average less than the rate at whichbetter strings get more copies by selection. To correctly choose a building block of size k fromstrings of length �(i�1) by picking �(i) genes at random, we need a building-block repetitionfactor  = ��(i�1)�(i) �=��(i�1)�k�(i)�k � strings to have one expected copy remaining of the desiredbuilding block. For large values of �(i�1) and �(i) compared to k,  varies as (�(i�1)=�(i))k. Wemay choose �(i) so that  is smaller than the number of duplicates generated by the selectionoperator. Another way to design a gene deletion schedule is to �x  to a constant value muchless than 2ts, where ts is the number of selection repetitions per length reduction. This is donebecause we expect binary tournament selection to roughly double the proportion of the bestindividuals during each invocation. De�ne the ith length-reduction ratio as �i = �(i)=�(i�1).Using the asymptotic relation for  = (�(i�1)=�(i))k = ��ki , we recognize that the assumed�xed  roughly implies a �xed length-reduction ratio � = �i, for all i, and we calculate thetotal number of length reductions required to reduce the string length to O(k). Assuming �nalstring length equal to �k, where � � 1, the number of length reductions (tr) required is givenby the equation `0=�tr = �k: (4:5)Simplifying, we obtain tr = log(`=�k)= log�. This suggests that if the �(i) values are chosento make the deletion so that the length-reduction factor � is a constant, tr varies as O(log `).95
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At the worst case when only one gene is deleted at a time, the complete �ltering process isbounded by O(`).Unfortunately, the growth of building-blocks can be uneven due to cross-competition amongthe di�erent blocks. Although the purpose of thresholding is to restrict such cross-competition,the method of choosing a thresholding parameter suggested in Section 4.3.2 does not providea completely satisfactory solution. The following section suggests some further modi�cationsthat bolster the performance of the fmGA.4.4 Some Modi�cationsThe success of the fmGA depends upon the ability of the building-block �ltering process to�lter out the order-k building-blocks. Rigorous testing of the fmGA on di�erent test functionpointed out that the methodology for designing the building-block �ltering schedule describedin the previous section, does not give satisfactory performance all the time. This resulted intaking a two-pronged strategy to improve the performance of fmGA as listed in the following:1. Study the fundamental processes in the building-block �ltering process and develop analternate methodology for designing the �ltering schedule.2. Apply fmGA iteratively at each level.Each of them is discussed in the following sections.4.4.1 Designing building-block �ltering: An alternate approachThe approach for designing the building-block �ltering schedule described in the previoussection makes a simplistic assumption. It assumes that binary tournament thresholding selec-tion increases the number of strings containing good building blocks by a factor of 2ts, wherets is the number of times selection is applied. Although it is correct for binary tournament se-lection (Goldberg & Deb, 1991a), it is indeed a very idealized picture of thresholding selection.In this section, I take a more realistic approach to model the e�ect of thresholding selection.The objective of the following discussion is to outline an alternate methodology for designingthe �ltering schedule, which will be detailed in Appendix C.96
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Figure 4.5: This �gure shows the number of copies of building-blocks in the primordial gen-erations for a 25-bit bounded deceptive problem (Goldberg, 1992e) with 5-bit subfunction size.The �ltering schedule is designed using the methodology described in previous section, origi-nally presented in (Goldberg, Deb, Kargupta, Harik, 1993). This �gure shows that during thelate stages of the primordial stage this approach suggests weaker thresholding that may lead touneven growth of building-blocks. Length reduction ratio, � = 0:5, population size n = 5000.The objective of designing a �ltering schedule is to make sure that all the strings containingbetter building-blocks grow evenly. Unfortunately, a �ltering schedule designed based on theassumption that binary thresholding selection continues to evenly grow all the building-blockscan lead to serious trouble. This can be illustrated by observing the growth of building-blocksduring the primordial stage with a �ltering schedule designed based on the approach describedin the previous section. Figure 4.5 shows the growth of the �ve building-blocks correspondingto the �ve subfunctions of a 25-bit problem. The population size is 5000 and the lengthreduction ratio is 0:5. The chosen value of c0(�0) is 2:0. Figure 4.6 shows the corresponding�ltering schedule. As we see from Figure 4.5, the �ltering schedule developed using this simpleapproach does not accomplish even growth of all the building-blocks during the late stages of theprimordial stage. In this case, one of the building-blocks starts growing at a rate much higherthan those of others. This eventually leads many building-blocks to the verge of extinction.Clearly, the approach described in the previous section makes the thresholding too relaxedduring the late episodes of the primordial stage. Instead of simply increasing the thresholding97
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Figure 4.6: This �gure shows three graphs. The topmost one shows the string length re-duction schedule. The other two graphs show the thresholding parameter values during thedi�erent episodes of the primordial stage designed using two methodologies. Approach (a) de-notes the scheduling procedure originally suggested by Goldberg, Deb, Kargupta, Harik (1993).Approach (b) represents the alternate methodology developed in Section 4.3.4. Note that ap-proach (b) o�ers a more restricted value of thresholding parameter during the late episodes ofthe primordial stage, and this reduces the uneven growth of building-blocks.parameter value by an arbitrary amount during the late episodes, let us �rst take some time tounderstand the fundamental processes in thresholding selection and building-block �ltering offmGA. There are primarily three design variables in building block �ltering, namely� threshold parameter value, � for a given string length,� the duration for which selection continues before gene deletion is applied, and� the number of genes deleted during a particular gene deletion operation.Although thresholding minimizes comparison among classes from di�erent partitions, itallows a certain degree of cross-competition for eliminating the instances of bad partitions.Unfortunately, this cross-competition can also act against our main objective|even growth ofbuilding-blocks. The cross-competition among the instances of classes from di�erent but goodpartitions may result in eliminating one another. At the initial stage with a random population,the e�ect of such cross-competition is minimal; however, this may become an acute problem98
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at the later stages of the primordial phase unless the �ltering schedule is properly designed.We need a model of selection in the presence of cross-competition to address this problem.Once we do that, we can decide how many times selection should be applied without makingcross-competition a serious problem.Thresholding restricts a string from competing with some strings in the population. In otherwords, thresholding creates a niche of a string within the population. Two strings are membersof the same niche if they can compete with each other. The whole population is divided intosuch overlapping niches. The gene deletion operator of the fmGA removes some members of aniche and also introduces some new members. One possible way to view the combined e�ect ofgene deletion and thresholding is to look at their e�ect on the thresholding niche. If the size ofthe thresholding niche of a string is too small, its growth will be restricted; on the other hand,if the size is too large, cross-competition among the strings from di�erent partitions will be veryhigh. Therefore, one possible design objective for choosing a �ltering schedule is to minimizedrastic changes in the size of the niche.The number of genes deleted can be decided using a chosen length reduction factor asdescribed in the previous section. This approach does not suggest any change in this aspect.It is possible to come up with a technique for designing a �ltering schedule that uses a morerealistic model of thresholding selection in the presence of cross-competition among di�erentbuilding-blocks and minimizes the changes in the size of the thresholding niche. This formu-lation is somewhat involved, and it is presented in Appendix C. The building-block �lteringschedules designed using this approach have been more successful in maintaining all the di�er-ent building-blocks in the population. Figure 4.7 shows the growth of the �ve building-blocksfor the same problem considered in Figure 4.5. All the fmGA parameters are kept the same.This apparently demonstrates that this approach o�ers a more successful way to maintain thegrowth of all the building-blocks especially during the late stages of the �ltering phase.4.4.2 Iteration within each levelAs we noted earlier, the messy GAs work level-wise, where each level corresponds to the orderof possible decomposability of the problem. Iterative application of the fmGA within eachlevel increases the chance of success. Those building-blocks that could not be detected during99
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shown in Table 4.8. The working of the fmGA is very similar to that of the original messy GA.The main di�erences of the fmGA are the following:1. probabilistically complete initialization,2. gradual reduction of string length by random deletion of genes during primordial stage,and3. iteration within the each level.The following section summarizes the conceptual strengths and weakness of the fmGA.4.6 Major Conceptual Underpinnings of the fmGAThe fmGA replaced the enumerative initialization (O(`k)) of the original messy GA by an O(`)probabilistically complete initialization. Since the building-block �ltering schedule can have atmost O(`) steps, the overall sample complexity of the primordial phase is O(`2).The fast messy GA is one among the rare class of algorithms that realized the need fordetecting appropriate relations. The simple GA fails to work on many problems where itsassumptions about good relations does not match with the problem. The fast messy GAeliminates this problem. Moreover, the fmGA takes a serious decision-theoretic approach forproper evaluation of equivalence classes. It sizes the population to guarantee correct evaluationwith a certain degree of con�dence. Another important aspect of the fmGA is that unlike theoriginal version of messy GA, it brings in some of the bene�ts of implicit parallelism.However, the fmGA has some weak points too. First of all, the fmGA addresses only oneproblem of mGA|the lack of implicit parallelism. Therefore, it still su�ers from other problemsof the mGA, as noted in the previous chapter. In the following, I list some of the conceptualweak points that the design of fmGA su�ers from:� Relation comparison is accomplished by comparing classes from di�erent relations. As wenoted earlier, this is a general problem of thresholding selection. This leads to cross-competition among classes from good relations, and as a result, maintaining all thebuilding-blocks during the �ltering stages may become di�cult.101
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Since the primordial phase does not have any mechanism to construct strings with goodbuilding-blocks, maintaining even growth of all the building-blocks is sometimes (espe-cially for large problems) di�cult. However, the iterative level-wise working of fmGA canbe used to gradually improve the solution.� The thresholding selection during the building-block �ltering process may also make thealgorithm slower, compared to the running time of the sGA and mGA.� When string length is close to the problem length `, evaluation of strings on the basisof a single template may not be accurate, and as I pointed out earlier, the whole ideaof comparing classes in the context of a single template should be investigated morethoroughly.The following chapter presents the results of testing the fmGA on di�erent classes of prob-lems.
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/* Initialization */level = 1;template = random string; // Random initialization of the templateWhile(fmga termination criterion 6= TRUE) )f Repeat // Iterative application of fmGA within each levelt = 0; // Set the generation number to zero.Probabilistic Initialize(Pop(t), level); // Initialize the populationEvaluate(Pop(t), template); // Evaluate the fitness valuesRepeat // Enter primordial phasef episode = 0;Repeatf Thresholding Selection(Pop(t)); // Select better stringsepisode = episode + 1;gUntil (episode < episode max(t))GeneDeletetion(Pop(t)); // Delete GenesEvaluate(Pop(t)); // Evaluate fitnesst = t + 1; // Increment generation countergUntil (primordial termination criterion == TRUE)t = 0;Repeat // Enter juxtapositional phasef Selection(Pop(t));Cut and Splice(Pop(t)); // Apply cut and splice operatorMutation(Pop(t)); // Apply mutationEvaluate(Pop(t), template);t = t + 1;gUntil ( juxtapositional termination criterion == TRUE)template = optimal string(Pop(t), level); // template remains locally optimalglevel = level + 1;g Figure 4.8: A pseudo code for the iterative fast messy GA.103
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Chapter 5Testing of the Fast Messy GeneticAlgorithmThe emphasis on searching for better relations and classes makes messy GAs attractive forproblems in which little knowledge is available about the good relations de�ned by the chosenrepresentation. However, the theoretical conclusions should also be backed by adequate experi-mental results on su�ciently di�cult problems. Unfortunately, like many other issues in BBO,problem di�culty is yet another topic that is not well understood. Chapter 2 presented theSEARCH perspective of problem di�culty in BBO. In this chapter I �rst design a testbed forthe fmGA using our understanding of problem di�culty and then report the test results.Section 5.1 discusses di�erent classes of problems with bounded di�culties. A testbedis designed following the conclusions of this section. Section 5.2 presents the test results.Section 5.3 discusses the qualitative signi�cance of the experimental results. Finally, Section5.4 summarizes the main observations of this chapter.5.1 Design of ExperimentsDesigning di�cult problems requires some understanding about the problem di�culty in BBO.The objective of this section is to discuss the rationale behind the design of experiments fortesting the fmGA. The fast messy GA is tested against the following facets of problem di�culty:1. problem size, 104
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2. bounded inappropriateness of the representation, the source of relations, and3. sampling-noise.Each of them is described in the following sections.5.1.1 Problem sizeUnfortunately, for most of the interesting BBO problems, the search space grows exponentiallywith the problem dimension `. This does not necessarily mean exponential sample complexityin SEARCH, since it tries to solve a problem using low-order relations in a probabilistic andapproximate way. However, the cardinality of the set of relations needed to solve a problemin SEARCH depends on the size of the search space. Therefore, as we expect, the samplecomplexity in SEARCH increases as the problem dimension increases. The later sections ofthis chapter that present experimental results observe the growth of sample complexity withproblem size for certain classes of problems.The following section considers the di�culty due to the inappropriate source of relations. Iconsider one way to introduce bounded inappropriateness in representation|order-k deception.5.1.2 Inadequate source of relations: DeceptionInadequate sources of proper relations that do not satisfy the delineation requirement can cre-ate major trouble for a blackbox search algorithm. When the set of relations provided to thealgorithm does not have a su�cient number of appropriate relations, a search for good rela-tions is useless and therefore success in solving the problem e�ciently is very unlikely. Thedelineation-ratio provides a way to measure the adequacy of the source of relations. As thedelineation-ratio decreases, searching for appropriate relations become more and more di�cult.Deceptive problems (Goldberg, 1987) o�er one way to introduce problem di�culty by con-trolled inappropriateness of the representation. The objective of this section is to discuss thisclass of problems and explain the di�culty introduced by these problems from the SEARCHperspective.Although the fundamental idea of deception is quite general and can be used to quantifyinappropriateness of any arbitrary representation, traditionally deceptive problems have beende�ned in the context of sequence representation with either binary (Goldberg, 1987) or n-ary105
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alphabet (Kargupta, Deb, & Goldberg, 1992). Here we shall be restricted to binary represen-tation. There exist several di�erent de�nitions of deceptive problems (Bethke, 1981; Goldberg,1987). Although all of them capture the fundamental idea, we shall use Goldberg's de�nitionhere.De�nition 4 (k-th order deception) Let x̂ 2 X be a suboptimal point in the solution do-main such that �(x̂) < �(x�), where x� is the optimal solution. Let Ch;i and C�;i be theschemata or classes in partition i that contain x̂ and x�, respectively. A partition i is deceptiveif �(Ch;i) > �(Cj;i); 8j, where � denotes the average objective function value of the distributionwithin the class. A problem is called partially deceptive in the chosen representation if thereexists a partition that is deceptive. A problem is fully deceptive in the chosen representation ifall the partitions are deceptive. A problem is order-k fully deceptive if all the partitions of orderless than k are deceptive.Deceptive problems provide a way to increase or decrease inappropriateness in representationby controlling the delineation-ratio. As we increase the value of k, by de�nition of deception,all the relations of order less than k do not properly delineate the search space. Therefore, thenumber of relations that do not properly delineate the search space, and thereby the delineation-ratio, decreases as k increases, and vice versa. When k is a constant, a representation withk-th order deception becomes an instance of the class of order-k delineable problems and henceis solvable in polynomial sample complexity. However, as we increase the value of k, solvingdeceptive problems become more and more expensive, and the success probability decreasesdue to the decrease in delineation-ratio.Deceptive problems seem quite appropriate for testing an algorithm against bounded inad-equacy in representation. They will play a major role in testing fast messy GAs. The followingsection considers the possibility of making decision error in detecting good classes and theresulting source of di�culty.5.1.3 Inappropriate decision making: Signal and noiseSEARCH realizes the importance of decision making in BBO, and it takes a non-parametricapproach to compute the probability of decision error. However, this is not the �rst time ithas been addressed. Several e�orts (Goldberg, Deb, & Clark, 1992; Holland, 1975; Kargupta,106
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1995b; Rudnick & Goldberg, 1991) have been made for quantifying the sampling error in thedecision making processes in search. In this section I �rst briey review these e�orts. Finally,I pose a generalized signal-to-noise measure using a Bayesian approach developed elsewhere(Kargupta, 1995b) and de�ne crosstalk (Goldberg, Deb, & Thierens, 1993) as a possible sourceof decision error.Holland (1975) used the bandit framework for developing an \optimal" trial allocationstrategy in genetic algorithms. Holland considered the decision-making in a single bandit anddeveloped a sampling strategy that minimize the overall loss.A similar parametric approach was taken by Rudnick and Goldberg (1991) and by Goldberg,Deb, and Clark (1992). They explicitly computed the error probability for determining thesample size (population size) in GA. In a parametric approach, the underlying distribution isassumed. Therefore, to compute the error probability in choosing a better class out of the twocompeting classes using parametric approach, we need to know the underlying distribution. Bycentral limit theorem (Feller, 1959), the random variable, representing the objective functionvalue of the observed samples from a class, is normally distributed. This observation lies atthe heart of their parametric formulation of decision error probability. The mistake probabilitydepends on the distribution of the convolution of two competing classes (say, Ĉj;i and Ĉk;i).By central limit theorem, both �̂j;i and �̂k;i are normally distributed with mean �j;i; �k;i andvariance �j;in ; �k;in respectively. The mean and variance of the underlying distribution �̂j;i are�j;i and �j;i respectively. The convolution of �̂j;i and �̂k;i is also normally distributed. Themean and variance of the convolution distribution are (�j;i��k;i) and (�2j;in + �2k;in ), respectively.The error probability can be approximated by the tail of the normal distribution. The samplesize can then be appropriately chosen for a desired level of error probability. This can be doneby �nding an error probability � such thatz2(�) = (�j;i � �k;i)2�2j;in + �2k;in ;where z(�) is the ordinate of the unit, one-sided normal deviate. The corresponding samplesize can be found by n = z2(�) �2j;i + �2k;i(�j;i � �k;i)2107
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= z2(�)��d�2 :The term d=� is often called the signal-to-noise ratio of the convolution. Goldberg, Deb,and Clark (1992) considered the evaluation of di�erent partitions independent of each other.Holland's analysis on optimal allocation of trial also considered decision making for a singlepartition. Grefenstette and Baker (1989) pointed out some of the restrictions of the independentpartition perspective of a GA.A more general version of the signal-to-noise framework that accommodates mutually de-pendent simultaneous decision making has been recently proposed elsewhere (Kargupta, 1995b).This approach can be explained by considering a simpli�ed case. Consider two relations ri andrj . Assume that both of them have an index value of 2. Let us denote the two classes, de�nedby relation ri, by Ck;i and C�;i. When they are compared with each other using some statisticT , then Ck;i �T C�;i de�nes a convolution variable. Let us denote this by si. Similarly, for therelation rj , the comparison among Ck;j and C�;j can de�ne a convolution variable sj . For some� number of relations, a vector of such convolution variables can be de�ned. Let us denotethis convolution vector by s. The overall decision error probability (p) depends on the jointdistribution of these convolution variables. As the search algorithm generates new samples, thestate of the convolution vector s changes. This in turn changes the error probability p. If wedenote the change in s by �s, and expand p(s + �s) along any particular si using the Taylorseries, then it can be shown that p(s+ �s) depends on E[�si] and covariance(�si; �sj). Higherorder terms of the Taylor series can also be considered. However, we choose to neglect themfor the sake of simplicity. The generalized signal-to-noise measure can now be de�ned asSignal-to-noise measure = E[�si]Pi;j covariance(�si; �sj) : (5.1)The expected uctuation (numerator of Equation 5.1) toward the desired decision is viewed asthe signal, and the random e�ects represented by the covariance term in the denominator iscalled the noise.This signal-to-noise measure can be used to understand the decision-making process froma di�erent angle. Both a wrong signal and increased noise can cause decision error. Noise canbe introduced into the convolution kernel from two di�erent sources:108
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1. Intra-partition noise originates from the individual variance terms (the diagonal elements)of the covariance matrix. This is essentially very similar to the collateral noise de�ned in(Rudnick & Goldberg, 1991).2. Inter-partition noise originates from contributions from the o�-diagonal terms of the co-variance matrix.Intra-partition noise has been addressed in (Goldberg, Deb, & Clark, 1992; Holland, 1975;Rudnick & Goldberg, 1991) The role of inter-partition noise was also noted by Goldberg, Deb,and Clark (1992). Kargupta (1995b) explicitly addressed inter-partition noise from the signal-to-noise framework. The di�culty in decision making, caused by the cross-covariance terms(i.e. o�-diagonal terms), is called crosstalk.Decision making can be made di�cult by several means. Following Goldberg, Deb, andThierens (1993), I list some of the possibilities here:� multimodality of the objective function� noisy objective function� operator introduced noise� intra-partition noise� crosstalkAmong them, problems with crosstalk have received little attention. However, there is enoughreason (Forrest & Mitchell, 1993; Kargupta, 1995b) to believe that crosstalk can o�er a greatdegree of di�culty by increasing noise during the late stages of search. Problems with multi-modality intra-partition noise and crosstalk will be used to test fmGA.The following section presents the experimental setup and the results.5.2 Experimental ResultsThe fast messy GA is used to solve di�erent test functions. The test problems are designedusing our understanding of problem di�culty, as described in the previous section. The fastmessy GA is primarily tested against three aspects: (1) growth of search space, (2) bounded109
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inappropriateness in representation, and (3) sampling-noise. This section presents the resultsof the experiments.The test set up is briey described in Section 5.2.1. Results for large order-3 and order-5deceptive problems are reported in Section 5.2.2. This is followed by results for several boundeddeceptive problems with di�erent scaling and mixed sizes of the building-blocks. I consider theproblems used in Deb and Goldberg (1993) and present the results in Section 5.2.3 through5.2.6. Problems with crosstalk are considered in Section 5.2.7.5.2.1 Experimental setupTwo di�erent classes of problems are used to test against the di�erent aspects of problemdi�culty listed earlier. These two classes are� bounded deceptive problems� royal road functionsDeceptive problems test an algorithm against inappropriateness of representation up to a certainorder. Trap functions (Ackley, 1987) are known to be deceptive (Deb & Goldberg, 994b). I usetrap functions to construct several classes of deceptive problems of di�erent sizes and di�erentscaling. Bounded deceptive problems are also multimodal. This will be pointed out later whenwe construct them.The royal road functions (Forrest & Mitchell, 1993) are reported to have crosstalk elsewhere(Kargupta, 1995b). Problems with crosstalk o�er di�culty by making the decision process noisy.Before I present the experimental results, I would like to remind the reader that unlikethe simple GA, messy GAs do not assume any prior knowledge about the linkage, i.e. whatthe good relations are. Therefore, they have to pay the computational price for it which maysometime require more function evaluations compared to an algorithm like the simple GAwhich assumes linkage information. The following section present the test results for boundeddeceptive problems.5.2.2 Test function 1: Bounded deceptive problemsOrder-k delineable, bounded deceptive problems of any arbitrary length can be constructed byconcatenating fully deceptive subfunctions of size k one after another as described by Goldberg,110
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Deb, and Clark (1992). This section presents the test results for such deceptive problems withdi�erent values of k, in which each of the subfunctions is uniformly scaled.5.2.2.1 Order-three deceptive problemsThis test function is constructed by concatenating multiple numbers of order-3 subfunctions.Each of these subfunctions is an order-three trap function. The particular version of the trapfunction used can be de�ned as follows:f(x) = ` if u = `= `� 1� u otherwise;where u is the number of 1s in the string x and ` is the string length. The chosen problemsize ` = 90. Therefore, the number of subfunction is m = 30. If we carefully observe thistrap function, we shall note that it has two peaks. One of them corresponds to the stringwith all 1s and the other is the string with all 0's. Since ` = 90, the overall function contains30 subfunctions; therefore, this function has 230 local optima, and among them, only one isglobally optimal.The population-sizing equation developed elsewhere (Goldberg, Deb, & Clark, 1992) is usedfor choosing the population size. By noting that � = 1 for order-3 trap function, this equationcan be reduced to n = 16z2(m� 1)ng, where ng is the factor contributed from the probabilisti-cally complete initialization of the fmGA. For an order-3, 90-bit problem with the initial stringlength of 87, ng = 1:1 and m = 30. With z2 � 9, the population size becomes approximately4500. This was the chosen population size. Figure 5.1 shows the performance of fmGA alonggenerations for a 90-bit order-3 deceptive trap function. Three sets of data are presented, witheach corresponding to a di�erent level of fmGA. Figure 5.2 shows the corresponding buildingblock �ltering schedule, speci�ed by the sequence of thresholding parameter and the stringlength. The total number of function evaluations needed is 256,500. For all the runs of thissection, the initial template is randomly generated, unless otherwise noted. Binary threshold-ing selection with a shu�e number equal to the population size is used for all the experimentsreported in this chapter. For every experiment, the cut and splice probabilities are chosen tobe 0:04 and 1:0, following Deb (1991). 111
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The following section considers order-�ve deceptive functions.5.2.2.2 Order-�ve trap functionsProblems comprised of order-�ve trap functions are constructed in a way similar to theconstruction of order-three deceptive functions. The same trap function is used to generatebigger functions by concatenating order-�ve subfunctions together. For order-5 trap function,� = 1:4, and therefore, population size n = 90z2(m� 1)ng. The population size for an order-5,100 and 150-bit problems is around 7500 and 8500, using values of 4 and 3 for z2 respectively.Figure 5.3 and 5.5 show the building-block �ltering schedules for 100 and 150-bit problems.Figure 5.4 and 5.6 present the performance of fmGA for these two problems. The fast messyGA found the best solution for the 100-bit problem. A con�dence factor of 3 corresponds toan error probability of approximately 0:03 in normal tail. Since (1 � 0:03) � 50 � 147, theperformance of the fmGA matches the prediction. The total number of function evaluations forthe 100-bit and 150-bit problems are 100; 5000 and 425; 000 respectively. Note that the numberof function evaluations for the 100-bit problem is larger than that for the 150-bit problembecause in the former case, the fmGA found the best solution after several iterations; on theother hand the fmGA could not improve the best solution of the �rst iteration using additionaliterations. Since these are big problems and population sizes are quite large, only order-5 levelof the fmGA is run with a locally optimal template in order to reduce the computation time.The next immediate step is to test the fmGA for even larger problems. However, since thepopulation sizing equation is exponential in k, optimal population size becomes very large forlarger problems even for order-5 deceptive problems. For example, in a 200-bit problem withinitial string length of 195 the population size n � 3900z2. For any reasonable choice of z2population size becomes very large. Therefore, we choose to experiment the degradation inthe performance of the fmGA with the increase in problem size, keeping the population sizeconstant. Again, practical consideration of the available hardware leads us to assume a locallyoptimal template with all zeros and only the order-5 level of the fmGA is run.Figure 5.7 shows the degradation of performance for a constant population size of 5000in even larger problems. The best solution found by several level of regular fmGA iterationsis reported. Let us spend some time on this graph. When the number of subfunctions is20 (i.e., a 5 � 20 = 100-bit problem), a population size of 5000 has a con�dence factor c =113
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Figure 5.8: Building-block �ltering schedule for an order-3 deceptive, 30-bit problems.
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5.2.4 Test function 3: One up, nine downThis test function is designed again using order-3 deceptive trap functions. Ten 3-bit decep-tive functions are concatenated to form a 30-bit problem. The leftmost subfunction is scaled upby a factor of seven, and the remaining subfunctions are scaled down by a factor of 3. Figure5.11 shows the performance of the fmGA on this test function. The fast messy GA successfullyfound the correct solution for all the subfunctions, by the end of the third level. Figure 5.10shows the growth of the number of function evaluations along generations, starting from theorder-1 level.5.2.5 Test function 4: A linear scalingThe same 30-bit problem is used to construct this test function, with the only di�erencein scaling. In this case a linear scaling is used. All the subfunctions are numbered, startingfrom left to right. The leftmost subfunction is numbered 1, the next one gets 2, and so on.Denote this number by �. The scaling factor of the subfunction with number � is 10�. The�rst subfunction is scaled by a factor of 10, the second one is scaled by 20, and so on. Figure5.13 shows the performance of the fmGA for this test problem. The fast messy GA successfullyfound the correct solution for all the subfunctions by the end of the third level iteration. Figure5.14 shows the growth of the number of function evaluations along generations.5.2.6 Test function 5: Problems of mixed sizesThis test function is constructed by combining di�erent sized subfunctions. A 31-bit prob-lem is designed by concatenating one 3-bit subfunction and seven 4-bit subfunctions. All thesubfunctions are fully deceptive trap functions. Figure 5.15 shows the performance of the fmGA.The fast messy GA successfully found the correct solution for all the subfunctions by the end ofthe fourth level iteration. Figure 5.16 shows the growth of the number of function evaluationsalong generations. The following section considers the royal road functions.5.2.7 Test function 6: Royal Road functionsForrest, Mitchell, and Holland developed a class of functions known as royal road functions,as shown in Table 5.1. Royal road functions introduce di�culty for Simple GA by introducing119
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crosstalk noise into the convolution kernel. In the beginning of this chapter, I de�ned crosstalkand pointed out this property of royal road functions. The primary objective of this section is topresent the experimental results for demonstrating the performance of the fmGA on royal roadfunctions. However, before we do that, let us briey review crosstalk in royal road functions.R1 does not allocate bonus credit to the intermediate building blocks; on the other hand,R2 does. It has been reported (Forrest & Mitchell, 1993) that the sGA �nds solving R2 di�cultcompared to R1. The question is: If detecting good relations and good classes is made easierby introducing these additional bonus credit, then why is it that the sGA �nds R2 di�cult?The answer to this question is quite straightforward. These additional credits do not makethe decision-making any easier. It has been shown by Kargupta (1995b) that these additionalcredits introduce covariance noise. As we recall, we de�ned crosstalk as the aspect of problemdi�culty introduced by the covariance among the di�erent partitions. R2 introduces di�cultydue to crosstalk. Figure 5.17 reproduced from (Kargupta, 1995b), shows that the signal-to-noiseratio is much lower in R2 compared to R1. Therefore, decision-making becomes more di�cultin R2. Kargupta (1995b) constructed other instances of similar problems with crosstalk thatmay be di�cult to solve, in which decision makings for di�erent relations are not independent.The simple GA does not have any mechanism to restrict cross-competition among di�erentpartitions (relations). However, the thresholding selection of the fmGA tries to minimize thecompetition among classes from di�erent partitions. Therefore, it will be interesting to observethe performance of the fmGA for this class of problems. The following part of this sectionpresents the test results.The fast messy GA is used to solve both of these problems with a population size of 4000.Figure 5.18 shows the building-block �ltering schedule, that is, used for solving both R1 andR2. Figure 5.19 and 5.20 show the best solution found in di�erent generations for R1 and R2,respectively. The total number of function evaluations needed to solve R1 and R2 are 204,000and 136,000, respectively. For all the runs on the royal road function, the chosen template waslocally optimal, a string of all zeros. Again, like the large bounded deceptive problems, weskipped the low-order levels and used order-8 level fmGA with multiple iterations within. Notethat the number of function evaluations is less in the case of R2. As we noted earlier, the fmGAseems to be more resistant to crosstalk because of the presence of thresholding selection.124
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Figure 5.18: R1 & R2: Building block �ltering schedule.
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Figure 5.19: R1: Best solution found in di�erent generations. The optimal solution is foundat the end of the second iteration. 125
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Figure 5.20: R2: Best solution found in di�erent generations. The optimal solution is foundat the end of the �rst iteration.A di�erent version of the royal road function has recently been proposed (Jones, 1994). Ishall refer to this function by R3. R3 can be de�ned as follows. Let us assume that j and iindex the levels of hierarchy (1 is the lowest level) and target classes (1 is at left), respectively.There are 2k target classes at level 1 and 2k�j target classes at level j + 1. Each target class isde�ned over some b loci. De�ne�1(j) = u� + (n(j)� 1)u if n(j) > 0= 0 if n(j) = 0;where n(j) is the number of found targets at level j; u� and u are parameters such that u� > u.Now de�nem(i) = number of loci that have values common with the optimal solution in class i.Then, �2(i) = m(i)v if m(i) < m� + 1126
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www.manaraa.com

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

M
a
x
i
m
u
m
 
o
b
j
e
c
t
i
v
e
 
f
u
n
c
t
i
o
n
 
v
a
l
u
e

Generations

Maximum objective function value

Figure 5.22: R3: Best solution found in di�erent generations. The optimal solution is foundat the end of the third iteration.5.3 Analysis of ResultsThe fast messy GA has been tested against di�erent kinds of order-k delineable problems thatcan be solved in SEARCH in polynomial complexity. These problems include,1. bounded inappropriateness in representation,2. multimodality,3. di�erent size building-blocks,4. non-uniformly scaled building-blocks, and5. crosstalkBounded deception provides a nice way to introduce order-k delineability in a problem. There-fore, bounded deceptive problems were used to design all the di�erent test suites except for thelast category|problems with crosstalk. The fmGA solved order-3 and order-5 deceptive prob-lems. Section 5.2.2 presented the results on these problems. In addition to being boundedlyinappropriate in representation, these problems also have multimodality. The order-3 deceptive128
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90-bit problem has around 230 local optima. The largest problem that was used for testing thefmGA is an order-5 deceptive, 250-bit problem. It has even higher order of inappropriatenessin representation and millions of local optima. Iterative application of the fmGA solved theseproblems.In real optimization problems di�erent building-blocks of the solution are likely to be di�er-ently scaled. Section 5.2.3, Section 5.2.4, and Section 5.2.5 presented the results for di�erent testproblems with non-uniform scaling. The fmGA successfully solved these problems. These testresults also point out that thresholding selection is e�ective in minimizing the cross-competitionamong building-blocks up to a certain degree.The fmGA has also been tested against problems in which building-blocks of di�erent sizeare needed to solve them correctly. The results presented in Section 5.2.6 showed that thefmGA can solve this kind of problems.Problems with crosstalk are also used in the test suite. Royal road functions served thispurpose. Royal road function R2 o�ers di�culty by introducing covariance noise into the con-volution kernel (Kargupta, 1995b). John Holland (Jones, 1994) recently developed Royal roadfunction R3 which o�ers di�erent kinds of di�culty including inappropriateness of representa-tion and crosstalk. Iterative application of the fmGA soved this problem.Despite these successes, the fast messy GA faces a problem. The problem is regardingits scalability to very large problems. Maintaining all the building-blocks together during thebuilding-block �ltering process is di�cult since cross-competition among di�erent building-blocks can eventually lead to the extinction of good building-blocks from the population. Al-though the modi�ed thresholding technique improved the performance, this does not solvethe problem completely. Multiple iteration of the fmGA is introduced because of this reason.Again this improved the performance and we have been able to solve up to 250-bit problemswith millions of local optima and bounded inappropriateness in representation. However, thisproblem with cross-competition has a deep root in the design of the fmGA. As we noted in theprevious chapter, although the sample space is separate, the relation and class spaces of thefmGA are implicitly de�ned together. This is also a characteristic of the original messy GA.Comparison between two relations is accomplished by relaxing the thresholding parameter andby physically comparing two classes from di�erent partitions. This leads to cross-competitionthat can eliminate some classes from good partitions.129
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The test results of this chapter can also be interpreted from the following perspectives:� success in detecting the correct relations,� reliability of overall success in �nding the optimal solution, and� the accuracy of the solution found.The performance of the fmGA along each of these directions will be discussed in the followingparagraphs.The fmGA uses the building-block �ltering process to detect the correct relations. All thetest problems considered in this chapter are order-k delineable, and therefore the complexity ispolynomial, provided there exists an appropriate measure that can correctly detect the goodrelations. For all the chosen test problems, there is a selective advantage of the correct relationswhen evaluated in the context of the locally optimal template. Selection should be able to detectthis, and it did. Therefore, it is fair to conclude that the fmGA has been successful in �ndingthe right relations for the classes of test problems considered here. For di�erent problems,di�erent measures may be required; however, the fundamental mechanism should work.Although the iterative version of the fmGA with modi�ed thresholding scheme solved prob-lems up to 250-bit with millions of local optima, thresholding selection has limitations in itscapability to control cross-competition among building-blocks. This may lead to elimination ofsome building-blocks and thereby it may reduce the reliability of the fmGA.The solutions found for most of the test problems are the optimal solution. When thepopulation size was suboptimal, the fmGA showed a reasonable degradation of performance.Therefore, the fmGA is quite successful on this ground.The SEARCH framework proved that the class of order-k delineable problems can be solvedin polynomial sample complexity. The complexity of the original messy GA was polynomial; stillfor any practical purpose scalability of the original mGA was poor because of the exponentialgrowth in the complexity with the order of delineability, k. The primary motivation behind thedevelopment of the fmGA was to exploit implicit parallelism and relax the process of decisionmaking in relation and class spaces for reducing the complexity of search. The previous work byGoldberg, Deb, Kargupta, and Harik (1993) hypothesized that the fmGA might be able to solveorder-k delineable problems reliably and accurately in subquadratic complexity. Although this130
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appears to be true for the size of problems considered in this dissertation, elimination of cross-competition among the building-blocks is a hurdle that needs to be crossed for materializingthat hypothesis for even larger problems. As we noted earlier the implicit implementationof the relation comparison process is the fundamental reason behind this problem. Explicitdecomposition, either spatially or temporally, of the relation and class decision making processesis essential to ovecome this di�culty.The following section summarizes the main points of this chapter.5.4 SummaryThis chapter started with a note on problem di�culty from the SEARCH perspective. This isfollowed by a description of experimental setup and the test results. The fast messy GA is testedalong three dimensions of problem di�culty: (1) bounded inappropriateness in representation,(2) problem size, and (3) decision error due to sampling noise. Order k deceptive problems of-fer bounded inappropriateness in representation. Both order-3 and order-5 bounded deceptiveproblems contain millions of local optima. Apart from that, they have bounded level of inap-propriateness in the representation. These are di�cult problems. The fast messy GA performedquite well against these problems. For large problems, multiple iterations were used, since thefmGA was not able to maintain all the building-blocks for all subfunctions in a single iteration.The test results for deceptive problems with mixed building-block sizes and non-uniform scalingshowed that the fmGA is capable of solving such problems. Thresholding selection seems to bequite e�ective in controlling cross-competition among di�erently scaled building-blocks.The fmGA is also tested against large deceptive problems. Iterative application of thefmGA has been successful, although maintaining all the building-blocks remains a problem. Aspointed out earlier, the process of comparing relations in fmGA may be the fundamental reasonbehind this.Sampling noise can also introduce di�culty for a particular algorithm. In this work, Irestricted myself to problems with noise due to crosstalk{covariance contribution to noise kernel.The fast messy GA is tested against the class of royal road functions, which are known tocontribute crosstalk noise in a GA (Kargupta, 1995b). The fast messy GA successfully solvedall the Royal Road functions. It is also observed that the fmGA solved R2 with a smaller131
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number of function evaluations. This is because the e�ect of crosstalk is minimized in thefmGA because of the thresholding selection.The following chapter presents the results of applying the fmGA for solving the so-calledscan-to-scan correlation problem.

132
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Chapter 6Application of the Fast Messy GAto Target Tracking ProblemThe issue of simultaneous tracking of targets is becoming increasingly important in militaryendeavors as the air defense system is becoming increasingly vulnerable to air breathing threats,such as bombers and air and sea-launched missiles. As the target indications (blips) are detected,the trajectories of the corresponding blips need to be determined using a series of frames ofimaging data. As the number of targets increases, the number of possible trajectories (tracks)increases very rapidly. The tracking problem can be categorized into two di�erent problems|track initiation and track continuation. In track initiation phase, three frames of imaging dataare usually considered and a track initiated from each blip in the �rst frame is found. Intrack continuation phase, each track found by the track initiation phase is continued as newframes of imaging data arrives. The former problem is harder than the latter, because forN targets in each of three initial frames, there are a total of N3 tracks possible and for N3tracks there are a total of (N !)2 valid solutions possible. Even though there exists a number ofpattern recognition approaches that uses some windowing techniques, they are computationallyexpensive. Recently, neural networks have been used successfully in this tracking problem witha reasonable number of evaluations (Elsley, 1990). This method uses a preprocessing techniquethat reduces the number of possible tracks from n3 down to about 5n or so in order to keepthe size of the neural network within manageable limits. But this drastic reduction may causesome needed tracks to be eliminated from consideration. In this work, we use a more relaxed133
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preprocessing technique that eliminates infeasible tracks and a fast messy genetic algorithmsto �nd correct initiation tracks.In the remainder of this section, I �rst present a brief formulation of the problem, followedby the simulation results.6.1 Problem FormulationTarget tracking has been a problem of interest for a long time, mainly because of its importancein the �eld of air defense systems. Given a large number of potential target indications (\blips")the job of a target-tracking system is to determine the trajectories of the corresponding blipsthrough a series of frames of sensory imaging data. This can be divided into two steps:� trajectory initiation: generation of tracks from the imaging data at the initial stage.� trajectory continuation: identifying the location of a blip in the incoming data frame, onetime step at a time.Trajectory initiation is known to be more di�cult than trajectory continuation. This is notonly because of the high computational e�ort required, but also because it demands a highdegree of accuracy in the performance of the tracker; otherwise the next stage of trajectorycontinuation will be increasingly misleading. The sequel presents a target tracker, based on afast messy genetic algorithm and its performance in the track initiation problem.The �rst step for addressing this problem using a messy GA is to design a suitable codingscheme, which transforms the problem space into the messy string space. One of the interestingfeatures of the track initiation problem is that di�erent candidate tracks may share commonblips. This may introduce a large number of redundant invalid strings|strings containingtracks with many shared blips. A coding scheme may worsen the situation if it is not designedcarefully. The coding scheme used for the present work tries to minimize this problem. Everystring is comprised of a sequence of genes, where every gene corresponds to a unique blip inthe initial frame and the corresponding allele represents a candidate track initiated from thatparticular blip. In order to do this in a systematic way, every blip in the initial frame isnumbered as 1; 2; 3 � � �N , each corresponding to a blip. In the present implementation, the �rstgene corresponds to the number 1 blip, second gene corresponds to the number 2 blip and so on.134
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After the preprocessing stage all candidate tracks initiating from each of these blips are seriallylabeled. Figure 2 depicts this clearly. Every allele is a label corresponding to a candidate track,initiated from the blip, denoted by the gene. If we denote a track corresponding to an allele byxi then, xi = xi(t0)xi(t1) � � �xi(tf)is a candidate track, generated by connecting xi(t0), xi(t1), � � �xi(tf) blips in the data framecorresponding to t0, t1 � � � tf time respectively.The objective function value of a string is measured by using the acceleration and intensityinformation obtained from the imaging data:f(x) = � NXi=1Ai + � NXi=1 dIi +  tfXt=t0 NXj=1(1� NXi=1 �(blipj(t); xi(t))) (6:1)�(blipj(t); xi(t)) = 1 if blipj(t) = xi(t)= 0 otherwisewhere, Ai is the acceleration of the i-th track and dIi is the intensity variation along that track;�, � and  are constants. This expression is similar to that used elsewhere (Elsley, 1990). Thelast term in equation 6.1 is a penalty term used for minimizing the sharing of blips; t0 and tfcorrespond to the initial and �nal time frame, considered for the track initiation. blipj(t) is thej-th blip in the data frame, corresponding to the t-th data frame.6.2 PreprocessingOut of the O(N2) possible candidate tracks for each missile, many can be discarded by conven-tional preprocessing of the data. In the present implementation, the preprocessor makes use ofa windowing technique. A spatial window is constructed around every blip in the initial frameand all the blips in the later time frames, falling within the window are considered. All possibletracks generated from these blips are considered to be candidate tracks for that particular blipin the initial frame. 135
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6.3 Simulation Result6.3.1 Experiments on unclustered missilesA simulation is run with 100 moving targets. Initial locations of the targets are randomlygenerated and each of them is assigned with random initial velocity and acceleration. Intensityof every target has a constant and a uctuating component, which makes the problem moredi�cult. Imaging data from the �rst 3 frames are used for initiating tracks. Figure 3 showsthe actual tracks of the targets in the �rst 3 data frames, with 100 blips in each frame. Thereare a total of (100)3 or 106 di�erent tracks possible and a total of (100!)2 or 8:7(10315) di�erentsolutions (valid or invalid) possible. After preprocessing on the basis of the spatial windowingtechnique, the search space is reduced to about 3:5(1059) alternatives.Figure 4 shows the tracks corresponding to the best string in the initial random population.Notice that this solution has ignored a number of blips from the second and third frame andinstead included a number of tracks with shared blips. Figure 5 shows the tracks correspondingto the best string in generation 25. The solution is the global best and only required a total of50,689 function evaluations, roughly 1:5(10�55) of the search space. Figure 6.5 summarizes theimportant parameters of the simulation and the results.Track continuation may be achieved in at most O(N) evaluations. For each successive frameat time t, preprocessing similar to that adopted here may be performed for correlating the blipsin the previous frame at time t � 1. Messy GA or some local search technique may be used tofollow up the preprocessing in order to �nd the optimal track continuations.6.3.2 Clustered missile simulationsIn the previous subsection we presented the encouraging performance of messy GA tracker for100 randomly dispersed missiles. In order to test the performance further, we made testbedeven harder. This time the missiles were initialized in such a way that they form several spatialclusters. The light intensity of the missiles have random uctuation as before. The performanceof the messy GA tracker for 150 and 300 clustered missiles problems are as follows:� 150 clustered missile problems: Figure 6.6 shows the parameters of simulation. Allthe missiles are launched in such a way that they are distributed among �ve spatiallydi�erent clusters. Our messy GA tracker has been able to �nd out correct tracks for 149137
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Figure 6.4: Tracks found by fmGA at generation 25Simulation features:number of targets = 100varying intensity� = � = 1:0 = 2:0Messy GA parameters:random templatepopulation size = 4224splice probability = 1.0cut probability = 0.02Results:� number of mistakes = 0� function evaluations = 50689Figure 6.5: Important particulars about the messy GA tracker and simulation for 100 unclus-tered missiles problem. 139
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Simulation features:number of targets = 150varying intensityclustered problem� = � = 1:0 = 2:0Messy GA parameters:random templatepopulation size = 2432splice probability = 1.0cut probability = 0.02Results:� number of mistakes = 1� function evaluations = 102140Figure 6.6: Important particulars about the messy GA tracker and simulation for 150 clusteredmissiles problem.missiles out of 150 missiles even for a modest population size of 2432. Figure 6.7 showsthe variation of quality of solution along generations.� 300 clustered missile problems: In this simulation we used 300 clustered missiles,keeping everything else as before. Figure 6.8 shows the relevant parameters for thesimulation. Figure 6.9 shows the correct tracks of the 300 missiles. This is a reallydi�cult problem, considering the fact that the missile trajectories are so closely spaced.Messy GA tracker found right tracks for 295 missiles out of 300 with a population size ofaround 2900. The variation of the quality of solution along generations is given in 6.10.6.4 ConclusionsIn this section, I have presented the results of applying fmGA for solving a target trackingproblem|a problem of high interest in the �eld of air defense systems. On a hundred target-140
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Simulation features:number of targets = 300varying intensityclustered problem� = � = 1:0 = 2:0Messy GA parameters:random templatepopulation size = 2919splice probability = 1.0cut probability = 0.02Results:� number of mistakes = 5� function evaluations = 105,080Figure 6.8: Important particulars about the messy GA tracker and simulation for 300 clusteredmissiles problem.
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tracking problem, the fmGA has found all tracks correctly after a reasonable amount of evalu-ations. This application encourages the use of fmGA in more di�cult tracking problems.
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Chapter 7Conclusions and Future WorkThis chapter discusses the main conclusions of this dissertation and identi�es future directionsof research. The following section presents the main conclusions.7.1 ConclusionsThis dissertation has dealt with two major aspects of blackbox optimization:1. understanding the fundamental principles that transcend a blackbox search beyond ran-dom enumeration and developing a general framework to quantify them2. designing and testing blackbox optimization algorithms that share some of these funda-mental principlesThe achievements of this dissertation along each of these dimensions are discussed in the fol-lowing sections.7.1.1 SEARCH and its implicationsThe SEARCH framework decoupled BBO into three spaces, namely the relation, the class, andthe sample spaces. It realized the importance of the decision makings in both relation andclass spaces. SEARCH establishes that the role of relations in BBO is essential to surpassthe limits of random enumerative search in both qualitative and quantitative manner. Theappropriateness of relations in solving a BBO is quanti�ed in terms of the delineation constraint.The quantitative analysis of the decision processes in SEARCH provided bounds on success146



www.manaraa.com

probability and sample complexity. I considered di�erent blackbox algorithms and showed thatthey can all be viewed from the SEARCH perspective. I also presented natural evolution in thelight of SEARCH. Some of the major computational aspects of natural evolution are studiedusing the basic principles of SEARCH. This led us to an alternate perspective of evolution thatestablishes the computational role of gene expression in evolution.SEARCH provides a uni�ed approach toward understanding the role of di�erent participantsin solving BBO problems: (1) algorithm, (2) problem, and (3) user. It identi�es the essentialcomponents of a blackbox optimization algorithm. The bounds on sample complexity andsuccess probability in SEARCH are used to quantify problem di�culty in BBO. This led tothe identi�cation of one particular class of BBO problems that can be solved in polynomialsample complexity|the class of order-k delineable problems. Parallel evaluation of relationsfrom the same set of samples can be accomplished by exploiting the structural properties ofthe set of relations considered by the algorithm. This observation is used to quantify so-calledimplicit parallelism (Holland, 1975). SEARCH also pointed out the potential computationalbene�ts from considering low-order relations �rst in the course of search. This observationmay �nd some rationale behind the widely observed bottom-up process of pattern formation innatural and arti�cial complex systems. An algorithm in SEARCH requires the user to de�nethe relation space. This appears to be one of the most critical responsibilities of the user.Several other principles for designing the search operators are also noted.Before I move on to the accomplishments of the second part of this thesis, let me list themain �ndings of this part of the thesis and explain their implications:1. It is possible to view blackbox optimization from a common uni�ed perspective. TheSEARCH framework o�ers one possible way to do that in an ordinal, probabilistic, andapproximate sense.2. Unless we assume relations among the members of the search space, blackbox searchcannot be any better than random search. Therefore the role of relations in BBO isfundamental.3. The appropriateness of relations in solving a BBO problem can be quanti�ed in terms ofdelineation, and it can be taken into account while deriving bounds on success probabilityand sample complexity in BBO. 147
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4. Relations can be evaluated in parallel from a common set of samples by exploiting somestructural properties of the set of relations provided to the algorithm. This observationcan be used to quantify implicit parallelism.5. Explicit bounds on success probability and sample complexity in BBO are derived.6. Problem di�culty in BBO can be rigorously quanti�ed using the SEARCH framework.7. The class of order-k delineable problems can be solved with sample complexity growingpolynomially along `, q, qr , 1=d�, and 1=d�r.8. SEARCH o�ers an alternate perspective of natural evolution that establishes the compu-tational role of gene expression in evolution.Each of these is discussed in somewhat more detail in the following paragraphs.The continued arrival of more new blackbox optimization algorithms has caused the need fora common, uni�ed perspective toward understanding BBO. The SEARCH framework developedin this thesis took a step toward this goal by presenting an alternate perspective toward BBO interms of relations, classes and ordering. The foundation of SEARCH is laid on a decompositionof BBO into the following items:� searching for relations� sampling� searching for better classes de�ned by relations� resolution, which exploits the delineation property of relationsThis dissertation proposes that these are the fundamental processes in any probabilistic, adap-tive sampling optimization algorithm. This proposition is also supported by explicitly consid-ering di�erent popular algorithms from the SEARCH perspective.The performance of a BBO algorithm will be no better than random search when no rela-tions are considered among the members of the search space. Every algorithm that aspires totranscend this limit has to consider some relations de�ned over the search space. Unfortunately,very few existing algorithms appear to realize the critical role of relations in blackbox search.148
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Most of the existing algorithms such as simulated annealing and simple genetic algorithms de-�ne relations implicitly and combine the fundamentally di�erent decision making in relationand class spaces together. This leads to undesirable decision errors. Another problem with thisimplicit de�nition of relations is that the user hardly has any idea about the relations processedby the algorithms. Di�erent kinds of relations may be envisioned among the members of thesearch space. For example, traditionally, the genetic algorithm has been viewed to pay attentionto the relations de�ned by the representation. However, relations can also be de�ned in termsof search operators like crossover and mutation. Therefore, exact identi�cation of relation spacefor the above-mentioned algorithms depends on the discretion of the individual. Since de�ningrelations that properly delineate the search space is critical for success, and since often in prac-tice the user may be able to help in de�ning the appropriate relation space, it is imperative thatthe algorithms explicitly de�ne the relation space. The main conclusion is that regardless ofsomeone's point of view about the dynamics of a search algorithm in the optimization domain,emphasis on relation processing is essential, if performance of the algorithm is an issue.Not all the relations are appropriate for a given problem and algorithm. This dissertationprovided a way to quantify the appropriateness of relations in terms of the delineation require-ment. Relations can be de�ned in many ways, and representation is not the only way to dothat. However, representation may be a useful way to de�ne problem-speci�c relations. It isthe primary responsibility of the user to de�ne this space, since same set of relations may ormay not be appropriate for di�erent problems. The delineation-ratio|the ratio of the numberof relations that properly delineate and the total number of relations in the relation space|reects how suitable the relation space is. An algorithm is likely to fail if this ratio is verylow. The bounds on success probability and sample complexity in SEARCH directly dependson delineation property of relations.The SEARCH perspective points out an interesting possibility. Relations divide the samesearch space in a di�erent manner. Therefore, relations can be evaluated in parallel using acommon sample set. This observation is used to quantify the so-called implicit parallelismnoted earlier by Holland (1975). This dissertation computed the bound on sample complexityfor sequence representation and also noted the computational bene�ts of implicit parallelismfor this particular representation. 149
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SEARCH provides us a closed-form bound on the sample complexity for solving a BBOin terms of the number of relations considered to solve the problem, their indices, the desiredquality of solution and relations, success probabilities in detecting an appropriate relation, andthe class containing the optimal solution. The �rst two parameters often depend on the problemsize. The SEARCH framework decouples problem di�culty along these dimensions:1. problem size2. success probability in making the right decision to choose a relation that properly delin-eates the search space3. success probability in selecting the class containing the optimal solution4. desired quality of relations and the solutionIt is important to realize that this only presents a higher-level picture that directly interpretsdi�erent aspects of problem and algorithm to the success. Di�erent speci�c characteristicssuch as multimodality (Horn & Goldberg, 1995), crosstalk (Goldberg, Deb, & Thierens, 1993;Kargupta, 1995b) of the problem and algorithm can be identi�ed within each of these aspects.The de�nition of problem di�culty and the bound on sample complexity in SEARCH canbe directly used to conclude that the class of order k delineable problems can be solved inpolynomial sample complexity. The design and testing of fast messy GAs presented in thesecond part of this thesis were inspired to solve this particular class of problems.SEARCH also provides insights in natural evolution. This dissertation briey reviewed apossible mapping of the main characteristics of SEARCH into natural evolution developed in(Kargupta, 1995b). Understanding evolution in the light of SEARCH requires paying attentionto the intracellular ow of genetic information|gene expression. An alternate computationalmodel of evolution is proposed that extends the traditional model of evolution (Holland, 1975)by incorporating steps of gene expression. A direct correspondence between di�erent compo-nents of gene expression process and SEARCH is hypothesized. The transciptional regulatorymechanisms are viewed as the relation space in evolution. This space also makes use of informa-tion from the sample space|the DNA. This work clearly showed that the amino acid sequencesin proteins de�ne equivalence classes over the DNA space. Therefore, nature appears to have a150
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distinct class space. Kargupta (1995b) also noted that in eukaryotes, construction of the newrelation is possible because of the diploid chromosome.The following section considers the achievements on the second ground of objectives of thisdissertation.7.1.2 Design and testing of the fast messy genetic algorithmsThe second qualitatively distinct part of this thesis is the design and test of fast messy GAsinitiated in Goldberg, Deb, Kargupta, and Harik (1993). Messy GAs (Deb, 1991; Goldberg,Korb, & Deb, 1989) are a rare class of BBO algorithms that emphasize on the search forproper relations that classify the search space in an appropriate manner. The original versionof messy GA (Deb, 1991; Goldberg, Korb, & Deb, 1989) completely lacked the bene�ts ofimplicit parallelism. The fast messy GA makes use of a probabilistically complete initializationand a building-block �ltering process to gain some of the advantages of implicit parallelism.The version of fmGA presented in Goldberg, Deb, Kargupta, and Harik (1993) appeared tohave some degree of sensitivity toward the choice of particular �ltering schedule. A modi�edtechnique for thresholding is introduced in this dissertation that appears to be able to maintainthe building-blocks more appropriately. Use of this modi�ed scheme and iterative applicationof fmGA minimized this problem. The fast messy GA has been tested on di�erent kinds ofinstances of the class of order-k delineable problems. Although the fmGA pays the price ofsearch for relations in terms of more function evaluations compared to algorithms like simpleGA on average, fmGA is likely to solve problems in which little knowledge about the goodrelations de�ned by the representation is available.The main conclusions of this part of the thesis are listed in the following:1. The scope of the simple genetic algorithm is limited, since it does not properly search forappropriate relations. The overall decision process is very noisy, since relation, class, andsample spaces are all combined into a single population.2. Messy genetic algorithms emphasize searching for the right relations. However, the origi-nal messy GA fail to exploit the bene�ts of implicit parallelism.151
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3. The fast messy genetic algorithm eliminated the enumerative initialization process of themessy GA by introducing a probabilistically complete initialization and a building-block�ltering process.4. The fast messy GA is likely to solve instances of the class of order-k delineable problemsin polynomial sample complexity.5. The fmGA is also tested against problems with crosstalk|royal road functions. Thresh-olding selection in fmGA restricts cross-competition among strings from di�erent parti-tions. This seems to be e�ective in solving problems with crosstalk, like the Royal Roadfunctions.6. Like the original messy GA, the fmGA implictly de�nes the relation and class spacestogether. Relation comparison is accomplished by comparing classes from di�erent rela-tions. This is inappropriate and may lead to cross-competition among classes from goodrelations.Each of these is discussed in somewhat more detail in the following paragraphs.Simple GA fails to properly search for relations that properly delineate the search space.The one point crossover highly disrupts the classes de�ned over loci that are not close to oneanother. In other words, it assumes that the relations de�ned over closer loci are better withno apparent rationale. Other crossovers like uniform crossover also do not work (Thierens &Goldberg, 1993). One of the fundamental problems is that relation, class, and sample spaces areall combined together, and as a result decision making in one space e�ects the others. Implicitparallelism was an interesting concept noted by Holland (1975). However, the computationalbene�t of implicit parallelism is outweighed by the error in decision making introduced by thelack of explicit evaluations of relations.Messy GAs are one among the rare class of algorithms that emphasize searching for ap-propriate relations. Messy GAs use a competitive template and explicit enumeration of goodclasses|building-blocks|to ensure correct decision making. However, explicit enumeration ofbuilding-blocks essentially means a complete lack of the bene�ts of implicit parallelism.The fast messy GA eliminated one major bottleneck of the messy GA|the enumerativeinitialization. The probabilistically complete initialization and the building-block �ltering pro-152
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cess can be used to detect better classes from better relations without sparing the advantageof implicit parallelism completely.Experimental results suggest that fmGA can be used to solve the class of order-k delineableproblems in polynomial sample complexity. The fmGA has been tested on di�erent kindsof deceptive problems with uniform scaling, non-uniform scaling, and with building-blocks ofmixed sizes.Kargupta (1995b) also showed that royal road function R2 o�ers crosstalk problem in simpleGAs. I briey reviewed the de�nition of crosstalk presented in Kargupta (1995b). The fmGAis also tested against royal road problems R1, R2, and R3. The fast messy GA seems to bee�ective in solving problems with crosstalk. Thresholding selection that restricts comparingclasses from di�erent partitions seems to contribute this feature.One possible source of problem in messy GAs is the thresholding selection. The thresholdingselection tries to �nd the better classes and also the better relations. Thresholding parameter isalways chosen less than the string length for allowing the elimination of bad relations. However,since the relations and classes are implicitly de�ned in the string population, construction ofordering among relations inuence that among the classes. Although the idea is to eliminatebad relations, physically, this means comparing classes from di�erent relations, which is inap-propriate. The undesirable consequence of this is that it allows competition among classes fromgood relations as well. This leads to cross-competition that may ultimately eliminate somebuilding-blocks.7.2 Rami�cationsThere are several possible rami�cations of this work. They are listed in the following:1. Explore the strengths and weaknesses of explicit consideration of relation, class, andsample spaces in a BBO algorithm.2. Consideration of parametric analysis when relation or class evaluations are not indepen-dent because of the implicit de�nition of the spaces.3. Study di�erent class and relation comparison statistics.153
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4. Design new algorithms in a more constructive manner, by designing new instances of thecomponents of the laundry list that de�nes an algorithm in SEARCH.5. Find classes of BBO problems, other than the order-k delineable problems, that can besolved in polynomial complexity.6. Explore the possibility of new relation construction.7. SEARCH and evolution|Can it lead to a biologically plausible implementation of themain lesson from SEARCH?8. Test the fast messy GA against noisy functions.9. Eliminate the problem with thresholding selection in the fmGA by either designing it tosolve a bounded number of building-blocks or by explicitly de�ning the relation and classspaces.The following paragraphs present a brief account of them.The foundation of SEARCH is laid on a decomposition of the search space into relation,class, and sample spaces. The analysis showed that the decision makings in each of these spacesis di�erent from the others. We also saw some plausible evidence supporting the hypothesis thatnatural evolution may have such explicit decomposition of the search space. The immediateextension of this work is to explore the strengths and weaknesses of such explicit decomposition.The SEARCH framework took a distribution-free ordinal approach to design class andrelation comparison statistics. The comparison process for each pair in either the relations orclass space is considered independent of other pairwise comparison process. Although this istrue in SEARCH, it may not be true in algorithms like GAs. Since all three spaces are combinedtogether, evaluations are not independent. When they are not not independent, a parametricapproach needs to be taken. Kargupta (1995b) took a Bayesian approach to analyze decisionerror for such cases. One possible rami�cation is to introduce parametric analysis in SEARCHin order to have a better idea about the decision making for speci�c algorithms, that do nothave explicit separation of spaces.Although almost all the blackbox search algorithms make use of some kind of class andrelation comparison statistic, the utilities of such statistics need to be constructively studied. We154
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need to know what kinds of statistics are \generally" suitable for relation and class comparisons,if such generalization is possible at all.This work also outlined the main components that an algorithm needs in order to transcendthe limits of random enumerative search. Now that we have a listing of the di�erent components,development of new algorithms should be more constructive. Design of a new algorithm is nowreduced to design of new instances of one or more items from this laundry list. Designing anew class or relation comparison statistic, designing a new ordering construction algorithm ineither of these spaces, and de�ning a new order to consider relations are some examples.The class of order-k delineable problems has been identi�ed as solvable in polynomial samplecomplexity. Other such classes of problems need to identi�ed.Most of the blackbox optimization algorithms rely on the user-provided source of relations,such as representation, operators. SEARCH also analyze BBO when such a source of relationexists. An immediate extension is to explore the possibility of using new relation construction.When the set of relations 	r does not have enough relations that properly delineate the searchspace, BBO is destined to fail. When we do not know this beforehand, the search will beexecuted anyway. However, the question is whether or not we can use the information gatheredfrom this bad set of relations to construct a new set of relations that is more appropriatefor the problem. One possible way to approach this may be to solve assuming some order-kdelineability and then use that information to construct a new source of relations and observethe improvement of performance if any.This dissertation pointed out a possible mapping between SEARCH and natural evolution.The proposed computational model of evolution, which realizes the importance of intra-cellularow of information, o�ers some interesting possibilities. While most of the existing models ofevolutionary computation focus on debating the relative importance of mutation and crossover,the SEARCH perspective points out that there is another important aspect of evolution that isalmost unexplored. SEARCH proposes a computational model that hypothesizes the explicitdecomposition of relation, class, and sample spaces in natural evolution. One possible extensionis to implement the lessons of SEARCH in a biologically plausible manner. Precise evaluationof equivalence classes using an operator like transcription is possible. Construction of newrelations using a diploid chromosome and a transcription operator can also be incorporatedin a GA. Incorporating the main principles of SEARCH in a biologically plausible manner155
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is indeed an immediate possibility. A new class of algorithms, named gene expression messyGA, is currently in the stage of development and testing; it uses operators like transcriptionto accomplish both relation construction and precise evaluations of equivalence classes. Morework needs to be done before presenting it to the users.This dissertation also presented the design and testing of the fast messy GA (fmGA), in-troduced earlier in (Goldberg, Deb, Kargupta, & Harik, 1993). There are several possibleextensions to this work. Along with others, the test results on problems with crosstalk arereported. By de�nition, crosstalk introduces noise in the decision making process that can bequanti�ed by the covariance measure described earlier. However, the decision making processcan be made noisy by several means. Using a noisy objective function is one possibility that wasnot included in the chosen test suite. The fast messy GA should be tested on such problems.Thresholding selection introduces cross-competition among building-blocks. As I noted ear-lier, the problem originates from the e�ort to do relation comparison by explicit class compari-son. The thresholding parameter is relaxed to allow the elimination of bad relations. However,this also introduces class-comparison from di�erent good relations. Such cross-competition mayresult in elimination of some good building-blocks. There appear to be at least two possibleextensions of the fmGA:� Derive or estimate the bounds on the e�ect of such cross-competition, and then presentthe fmGA as an algorithm that solves a bounded number of building-blocks at a time.� Explicitly de�ne the relation and class spaces. In that case, relation comparison is com-pletely separate from class comparison, and the problem of thresholding will not existanymore. Note that this explicit decomposition does not necessarily has to be a spatialdecomposition. It may be possible to decompose these spaces temporally.These two approaches de�ne the future directions of the messy GAs.
156
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Appendix ARelations, Orderings, andComputational Complexity: ABrief ReviewDevelopment of the SEARCH framework requires familiarity with some basic set theory. Thisappendix reviews these de�nitions. I start from the basic de�nition of a set, and proceed towardde�ning relations and orderings. I also review some de�nitions of bounds in computationalcomplexity.A.0.1 SetA set is a collection of distinguishable objects, called its members. If an object x is a memberof a set S, we write x 2 S. A one-element set is called a singleton. Given two sets S1 and S2such that for all 8x 2 S1, we know that x 2 S2, then we call S1 a subset of S2. It is denoted byS1 � S2. The set of all subsets of S is called the power set of S and it is denoted by 2S .A.0.2 RelationThe SEARCH framework explores the possibility of de�ning relations among the members ofthe domain of optimization. Therefore, it is important to understand what relations are, andthis section presents the set theoretic de�nitions of relation and its properties.157
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A relation is a set of ordered pairs. A binary relation r on a set S is a subset of theCartesian product S � S. For example, the less than or equal to relation on integer space isfx; y 2 N : x � yg, where N is the set of natural numbers. A relation r is reexive if x r x,8x 2 S. A relation r is symmetric if x r y implies y r x, 8x; y 2 S. A relation r is transitive ifx r y and y r z imply x r z. An equivalence relation is de�ned as a relation that is reexive,symmetric, and transitive. For example, \=" is an equivalence relation on the natural numbers.If r is an equivalence relation on S then for x 2 S, the equivalence class of x is fy 2 S : x r yg.If S = Si si, where every set si is not empty and every pair si and sj are disjoint if i 6= j,then we say that the sets si partition S. If r is an equivalence relation on S, then the distinctequivalence classes of r partition S. The number of distinct equivalence classes of r is called itsindex. A relation r is antisymmetric if x r y and y r x imply x = y.A.0.3 Partial orderAn order is a particular kind of relation. For example, when the set of individuals, each with adistinctly di�erent age, are ranked based on their age, we call this ranking an order. A partialorder is again a special kind of order. For example, if the above set is now ranked based on therelation is-ancester-of then all the pairs in this set cannot be ordered using this relation. Thiskind of relations, in which every pair cannot be ordered, is called a partial order. The SEARCHframework makes use of partial orders to partially rank di�erent regions of the search space.Therefore, this is again an important concept that we shall use frequently in this thesis.A partial order can be de�ned using the set theoretic de�ntions introduced earlier. A relationthat is antisymmetric and transitive is a partial order, and the set on which a partial order isde�ned is called a partially ordered set. For example, the relation is-descendent-of is a partialorder on the set of all males. A partial order r on S is called a total order if 8x; y 2 S we haveeither x r y or y r x.A.0.4 Bounds in complexityThe order of increase in the cost of running an algorithm characterizes its e�ciency. In blackboxoptimization the number of samples taken from the search space is a measure of the cost ofrunning an algorithm. The SEARCH framework considers this measure of cost for solving BBO158
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problems. Although, there exists several ways to bound the growth of cost (Cormen, Leiserson,& Rivest, 1990) I only consider the asymptotic upper bound.The asymptotic upper bound of a given function f(`) is the set of functions, in which forany member g(`) there exists constants c and `0 such that 0 � g(`) � cf(`) for all ` � l0. Thisupper bound is denoted by O(f(`)). A function f(`) is polynomially bounded if f(`) = O(`k)for some constant k. On the other hand, f(`) is exponential if f(`) = O(a`), for some a 6= 0.Further details about these de�nitions can be found elsewhere (Cormen, Leiserson, and Rivest,1990).
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Appendix BSimple GA: A Brief ReviewGenetic Algorithms (GAs) (Holland, 1975) are a class of stochastic search algorithms. Theyare motivated by the computational process in natural evolution. GAs emphasize the roleof representation in search. The simple GA (De Jong, 1975; Goldberg, 1989; Holland, 1975)works from a population of samples de�ned using some representation and searches by selection,crossover, and mutation operators.1. Representation: Simple GA sometimes uses a sequence representation. Binary rep-resentation and gray coding are some examples often used in GAs. A string usuallyrepresents a unique member of the search space. Strings are sometimes called chromo-somes. Every locus of a string is also called gene; the corresponding value at a locus of astring is called the allele value of the gene.2. Selection: The selection operator is responsible for detecting better regions of the searchspace. The \�tness' ' of a member is its objective function value. Selection computes anordering among all the members of the population and gives more copies to the betterstrings at the expense of less \�t" members. There exist various kinds of di�erent tools ofselection operators (Goldberg & Deb, 1991b). Some widely used selection operators areroulette wheel selection (Holland, 1975), tournament selection (Brindle, 1981; Goldberg,Deb, & Korb, 1990a) and stochastic remainder selection (Booker, 1982; Brindle, 1981).Although these selection operators are technically di�erent from each other, all of themshare the same feature giving more copies to the better strings. The amount of selectionpressure given to the population varies among these di�erent selection operators. However,160
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/* Initialization */t = 0; // Set the generation number to zero.Initialize(Pop(t)); // Initialize the population at randomEvaluate(Pop(t)); // Evaluate the fitness valuesRepeatf Selection(Pop(t)); // Select better stringsCrossover(Pop(t)); // Cross better strings to produce offspringMutation(Pop(t)); // Mutate stringsEvaluate(Pop(t)); // Evaluate fitnesst = t + 1; // Increment generation countergUntil ( t > tmax Or (termination criterion TRUE) )Figure B.1: A pseudo-code for simple GA.in absence of any other operators, all of them lead the population to convergence inpolynomial time (Goldberg & Deb, 1991b; M�uhlenbein, 992b).3. Perturbation operators:� Crossover : Crossover works by swapping portions between two strings. Singlepoint crossover (Holland, 1975), is often used in simple GA. It works by �rst randomlypicking a point between 0 and `. The participating strings are then split at that point,followed by a swapping of the split halves. The working of one point crossover isillustrated in �gure B.2(left). Crossover has interesting search behavior. This leadsto many investigations that resulted in di�erent perspective of crossover (Booker,1993; Culberson, 1994). Di�erent kinds of crossovers have been suggested in theliterature (Goldberg, 1989; Syswerda, 1989). Crossover is often applied with a highprobability.� Mutation: Mutation randomly changes the entries of a string. Mutation is usuallytreated as a low pro�le operator in GA because of its random nature of perturbation.Figure B.2(right) shows an example of a point mutation operation.161
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Appendix CAn Analysis of the ThresholdingA design procedure for choosing the parameters of the building-block (BB) itering process canbe developed by addressing the following issues:1. tournament selection in presence of cross-competition;2. random deletion of genes;3. choosing the thresholding parameter.Each of these is discussed in detail in the following sections. At the end, the overall lessons aresummarized.C.1 Selection in the Presence of Cross-CompetitionThe objective of this section is to develop a simple model of cross-competition. This model willhelp us choosing the number of times selection is applied before gene deletion.In the fast messy GA (fmGA) the building-block �ltering phase is divided into severalstages. Selection is applied for few generations, then genes are deleted randomly. This pro-cess is repeated several times until the string length is in the order of the size of the buildingblocks (BBs). Each of these iterations corresponding to a di�erent string length will be calledan episode. Thresholding divides the population into several overlapping subsets, each corre-sponding to a unique partition. Each of these subsets will be called a niche. These nichesare overlapping because the thresholding parameter is often less than the string length. To163
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determine how long selection should be applied in a particular episode we need to know thefollowing things:1. the initial distribution of strings within the niche;2. how strings grow or become extinct because of selective pressure.Determining the exact distribution of strings within a niche is hardly possible in absence ofknowledge about the problem itself. Since we cannot a�ord that luxury, we consider a simpli�edmodel. In this model there are the following kinds of strings in a niche:1. strings containing a building-block from a particular good partition; let us denote thispartition by ri and the group of strings containing the building-blocks in ri will be repre-sented by the subscript i.2. strings containing a building-block from all other partitions except the partition ri; Iassume that building-blocks from m partitions are needed to solve the problem. Theset of strings corresponding to each of these partitions except ri will be denoted by thesubscript j. Therefore j can take m� 1 di�erent possible values.3. strings that contain no building blocks; these are the strings that should be eliminatedduring the course of building-block �ltering stage.The proportion of building-blocks in a population will be denoted by qi and qj with thesubscripts chosen according the previous description. String containing building-blocks fromdi�erent partitions will compete with each other as long as they belong to the same threshold-ing niche. The nature of the cross-competition among these building-blocks depends on theircontribution to the objective function value of the corresponding solution. Let us de�ne aninteraction matrix �, to introduce the idea of cross-competition. �ij the (i; j)� th element of �is the expected number of copies a BB from partition i makes by competing with a BB de�nedover partition j. Every selection only generation within each episode is denoted by subscript t.The growth equation for qi can be written as,qi;t+1 = qi;t0@2� qi;t �Xj 6=i(2� �ij)qj;t1A (C.1)164
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Figure C.1: E�ect of selection in presence of cross-competition: �ij is the (i; j)� th elementof the BB interaction matrix � gives the expected number of copies a BB de�ned over set imakes by competing with a BB de�ned over the another set of genes, j. (Top) �ij = �ji = 1.(Middle) �ij = 0:95; �ji = 1:05. (Bottom) �ij = 0; �ji = 2:0. As we see slight bias towardsa particular BB can lead to quick extinction of the other BB after a certain stage.165
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where qi;t denote proportion of the BB from partition i within a niche at iteration t of anepisode. This can be written in the di�erential form as,@qi;t@t = qi;t 241� qi;t �Xj 6=i(2� �ij)qj;t35 (C.2)There are m such di�erential equations, governing the growth of m good BBs.The strings with no BBs are assumed to loose every competition with the strings with BBs.Therefore, the proportion of these junk strings,qjunk;t+1 = q2junk;t= �q2junk;0�t (C.3)In our simple model, equations C.1 and C.2 presents a simple picture of cross-competition. Letus now illustrate there physical interpretation. Consider a simple problem in which m = 2. Forthe purpose of illustration, let us assume that at the initial stage, qi;0 = qj;0 = 0:001. FigureC.1 shows the variation of qig;t and qjg;t over time for di�erent pair of values of �ij and �ji.The top �gure shows the ideal case when �ij = �ji = 1. In this case, the competition is evenand both the classes of strings continue to grow until their proportion converges to 0:5. Oncethe junk strings are eliminated, there is not really any selective pressure and therefore theirproportion remains the same. The �gure in the middle shows that if we perturb little bit bymaking �ij = 0:95 and �ji = 1:05 qig;t eventually reduces down because of slight bias towardsqjg;t. The bottom most �gure shows the extreme situation when �ij = 0 and �ji = 2. The two�gures from the bottom shows that qi;t and qj;t practically remains same up to a certain stageand there after qi;t falls apart. These two �gures show that when there is slight bias towarda certain BB, which could even be stochastic drift, after a certain stage one of the BBs takesover the other BB.Our objective is to �nd the number of iterations of selection only phase, after which cross-competition starts playing a major role, resulting in eliminating some BBs. For a given inter-action matrix, �, we should be able to solve the set of coupled di�erential equations at leastnumerically in the most general situation. However, such information is not likely to be avail-able. Therefore, it will probably be more prudent to explore the extreme cases and let the166
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user choose a reasonable value within the bounds. The following subsections consider two suchextreme cases.C.1.1 Cross-competition without any bias toward a particular good BBIf all the good BBs cross-compete with each other without any bias towards a particular one,in the ideal situation, i.e. when the e�ect of drift is neglected �ij = 1 for every combinationof i and j. Since both qi and qj -s grow identically, they can be treated as one variable, qig;t.All the growth equations for di�erent good BBs become identical and we can combine them toform a di�erential equation, @qig;t@t = qig;t [1�mqig;t] (C.4)which can be solved resulting,qig;t = "m+ 1�mqig;t0qig;t0 exp�t#�1qig;t asymptotically converges to 1=m; let us say a population is converged when qig;t = !m , inorder to solve for a �nite convergence time. Finally we can solve for the convergence time,t� = ln (1�mqig;t0)!mqig;t0(1� !) (C.5)where 1=! is a factor that weighs the degree of desired convergence to the maximum possibleqig;1. This factor is basically used to get a practical value for t� from the fundamentallyasymptotic variation of qig;t.C.1.2 Cross-competition in presence of strong biasThe model analyzed in this section tries to capture one of the worst case possibilities. Inthis extreme case, I assume that there exists strings with a BB de�ned over partition k thatwins every competition with the strings with BB over other partitions. In reality this kind ofsituation may arise when a particular partition is highly scaled compared to other partitions.167
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In other words for all j, �nj = 2 and �jn = 0. If that be the case, the growth equation forqng;t simpli�es to, @qng;t@t = qng;t [1� qng;t] (C.6)To make the situation even worse, we assume that the strings with BBs from partition i loosesevery cross-competition with other strings containing good BBs from other partitions.We also assume that, there exists the other extreme kind of good BB ig, which looses everycross-competition with other good BBs.In order to keep things simple, let us assume rest of the BBs behaves identically and theyloose or win without any a priori bias, except when they compete with either k or i; they looseevery time they compete with one of k and they win every competition with one of i-s. Wecan average the proportions of such BBs and de�ne a variable qj;t, representing the averageproportion of such BBs. The growth equation for BB i is,@qi;t@t = qi;t(1� qi;t � 2(m� 2)qj;t � 2qk;t) (C.7)Similarly we can write, @qj;t@t = qj;t(1� (m� 2)qj;t � 2qk;t) (C.8)Equation C.6 can be solved giving,qk;t = "1 + 1� qk;t0qk;t0 exp�t#�1Substituting this in equation C.8 we get,qj;t = expt�2 log(1�qk;t0+expt qk;t0 )1qj;t0 � 2�mqk;t0 + 2�mqk;t0+q2k;t0 expt q2k;t0Finally from C.7,qi;t = expt�2 logp1qi;t0 + 1�2qj;t0+mqj;t0+qk;t0 � 1p(�2qj;t0+mqj;t0+qk;t0 )168
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Figure C.2: Variation of qi;t; qj;t and qk;t along time.where, p = 1 + 2qj;t0 � 2 expt qj;t0 �mqj;t0 + exptmqj;t0 � qk;t0 + expt qk;t0The above closed form equations look involved. Any closed form solution for the optimumvalue of t�, at which (qk;t � qi;t) > � (where � is some small value) for the �rst time, is likelyto be even more complicated. Therefore, it may be more practical to �nd the optimal timeiteratively. Figure C.2 shows the growth of each of these kinds, each having an initial proportionof 0:001. Figure C.3 shows the values of t� for di�erent values of m and qi;0 = qj;0 = qk;0; allthe t� values are computed for � = 0:01;This section pointed out that despite the presence of thresholding, binary tournament selec-tion can introduce cross-competition that can eliminate some good strings. Therefore, selectiononly iterations within each episode cannot be continued for inde�nite period. The boundingcases described in the above sections provide some idea about the possible range of values.For most of the experimental results presented in this thesis, the number of generations withineach of these episodes have been less than 5. The following section considers the e�ect of genedeletion that takes the population from one episode to the next.169
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where t� represents the �nal selection only iteration of episode e.The following section considers the problem of choosing the thresholding parameter in anepisode.C.3 Choosing the Thresholding ParameterSo far we have developed an approach to decide how long selection should be applied in aparticular episode. Design of �ltering schedule is not complete until we address the e�ect ofthresholding parameter on the niches. In this section we develop a methodology for choosingthe thresholding parameter. One possible way to do so is to minimize disproportionate growthof building-blocks by controlling the size of their niches. Subsection C.3.1 presents a generaloverview of the approach. Subsections C.3.2 C.3.3 quantify the e�ect of string size reductionon the size of niches.C.3.1 OverviewAt the initial stage when the string length is close to problem length, most of the niches arevery large in size, since almost every string matches with any other string. Let us denote thethresholding parameter of episode e by �(e). As the string length is reduced by random genedeletions, corresponding thresholding parameter is also gradually reduced. When �(e) is reducedto �(e+1) some strings are either thrown out or pulled inside of a niche. This changes the initialproportions of BBs in the (e+ 1){th episode. The choice of ��(e) = (�(e)� �(e+1)) turns out tobe a design parameter controlling the sizes of the niches which in turn determines the successin maintaining all the BBs in the population. Before we actually demonstrate that, let me �rstbriey present an overview of the fundamental ideas of this section.Choosing the right thresholding parameter requires analyzing the behavior of thresholdingniches under selection and gene deletion. Explicit tracking of all the niches appears very di�cultif not impossible. The approach that I take here draws its motivation from the Lagrangian styleof solving problems in uid mechanics. I focus on the behavior of one arbitrarily chosen nichede�ned with respect to an arbitrarily chosen reference string containing a BB. I analyze thebehavior of this niche as selection and gene deletion are applied. The niche is always de�nedwith respect to the reference string and the reference string itself gets changed because of gene171
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deletion. Therefore this niche is not a �xed window to the population; rather it is a slidingwindow that changes itself as the reference string is modi�ed. Such approach is often called aLagrangian approach in contrast of the Eulerian approach in which the window remains �xedin the space that we are looking at. Let us de�ne SI the primary thresholding niche or simplyniche of a particular reference string as the set of strings in which every member has at least �(e)common genes with the reference string. De�ne a secondary niche SII of the reference stringas the set of all strings that do not compete with the reference string, but do compete with atleast one string in SI . The behavior of the reference string is viewed as an interplay amongits primary and secondary niche. The reference string can compete with any string in SI butnot with any of SII . SII can be viewed as a boundary region outside SI . As the strings in SIare reduced by gene deletion, some strings from SII may become a member of SI and somemembers of SI may join SII .The objective of the building-block �ltering episodes is to increase the proportions of thegood BBs. Since the population size is assumed constant, this is possible only if there existsome bad junk strings within the niches, that can be eliminated to make more copies of thestrings with BBs. After the initial stage, random deletion of genes is the only major source ofsuch bad strings. Even if the population contains enough junk strings, their fullest exploitationdepends on the choice of the thresholding parameter. If �(e) is very stringent, the size of theniche will be small and the number of niches will increase. This may result in poor growthand ultimate extinction of some BBs. On the other hand if �(e) is relaxed too much, the sizeof the niche may grow excessively and thereby neutralize the role of thresholding in restrictingcross-competition. One possible way to minimize such undesirable consequences is to choose�(e) � s in such a way that, the size of the niches neither go below a desired limit nor does itincrease beyond a limit.To choose the right ��(e) that minimizes the change in the size of the niches, we need tocompute the following things:1. the minimum required ��(e) for keeping strings which were originally within S(e)I intoS(e+1)I .2. the maximum allowable ��(e) beyond which strings which were originally with S(e)II wouldgo into S(e+1)I . 172
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The �rst item address the loss of strings from a niche. The second item considers the gain ofstrings from other niches. Each of these will be described in detail in the following sections.C.3.2 Keeping strings within the original nicheAs noted earlier, the size of a niche, created by thresholding depends on the chosen value ofthresholding parameter. If the thresholding parameter is not reduced enough after the genedeletion, the size of a niche may become very small and may lead to extinction. In this sectionI compute the minimum reduction in �, for which all the strings which were in SI(e) will alsobe in SI(e+1).The expected value of the minimum required ��(e) can be calculated as follows. Considertwo strings with some �(e)+d common genes, where dmay vary between 0 and �(e) = (�(e)��(e)).Denote the number of genes to be randomly deleted from each of these strings by �(e) =�(e) � �(e+1). The expected value for min��(e), which keeps two strings, having (�(e) + d)similar genes, together within the same niche, even after the random deletion of �(e) genes fromboth of them is,E [min��](�(e)+d) = min(�(e);(�(e)+d))Xx=max(g;0) �(�(e)+d)x ���(e)�d�(e)�x���(e)�(e) � �(e)Xy=max(g;0) ��(e)�d�(e)�y���(e)�(e) � �min(y;x)Xj=max((y�(�(e)+d)+x);0)�xj ��(�(e)+d)�xy�j �[min��(x; y; j)]g = �(e) � (�(e) � �(e))min��(x; y; j) = max(((y + x)� j � d); 0)The �rst summation from the left represents di�erent ways of deleting �(e) genes from thereference string. The dummy variable, x denotes the number of genes picked up from theset of mutually common genes. The term on the immediate right of this summation denotesthe probability associated with each of the di�erent ways to delete �(e) genes. The next twosummations denote the work on the second string. The rightmost summation is used to quantifythe possible deletion of the same genes from both the strings.E [min��](�e+d) can be computed for all values of d and their average value, E [min��]weighted by the proportion of strings with corresponding number of similar genes tells us that173



www.manaraa.com

in order to keep all the strings of SI(e) within SI(e+1) in an average sense,��(i) � E [min��] (C.12)This provides the average value of the reduction in �(e) required for keeping strings withinthe same niche in the next episode. The following section considers the possibility of gainingnew strings by choosing a relaxed value of the thresholding parameter.C.3.3 Restricting the inuxThis section describes how to compute the maximum allowable reduction in � that makes surethat the strings which were not originally in SI(e) are not allowed to be a member of SI(e+1).Equation C.12 can also be used to compute the maximum allowable reduction by letting d varythrough �1; � � � � �(e). The corresponding weighted average, say E [max��] gives us the otherinequality, ��(e) < E [max��] (C.13)In the rest of the discussion we often refer to inequalities C.12 and C.13 together by min-imax criterion. Figure C.4 shows the spectrum of values for every components of both theinequalities. The abscissa denotes the string length; On any particular vertical column diamondshaped points denote the spectrum of E [max��](�(e)+d) for d varying through �1 � � ���(e). Thedotted line portion on each vertical line denotes the spectrum of E [min��](�(e)+d) for d varyingthrough 0; � � ��(e). This set of data is computed for l = 100 and a string length reduction rateof 1:1. The initial string length, �(0) = 95 and the corresponding �(0) = ceil(95 � 95=100) = 91.For every subsequent �ltering stages, we compute the minimum required value of �� in order tokeep every string in SI(e) with (�(i)+d) genes similar to the reference string of that subpopula-tion (for every possible d varying 0 through (�(e)��(e))), within the subsequent SI(e+1)-s. Eachof these values are connected through the dotted vertical lines. Similarly the diamond shapedpoints represent the maximum allowable value of �� in order to keep every string in SII(e)with (�(e) + d) genes similar to the reference string of that subpopulation(for every possible dvarying through �1 to ��(e), out of the subsequent SI(e+1)-s. The �gure clearly shows thatthe two spectrum are almost non-overlapping. The only trouble seems to come from keeping174
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In general, the growth of building-blocks under selection is problem dependent; however, sincetournament selection is somewhat independent of the absolute objective function values, theranges of values found using these models should work for di�erent problems. For most of thereported experimental results on fmGA, the episode length have been restricted to less than 5.Section C.3 provided us with some ideas about choosing the thresholding parameter. Theminimax criterion can be used to choose a relatively stringent or relaxed thresholding value.However, determining the exact values of E[min��] and E[max��] are not possible unless wecompute the distributions of the niches. Since this is not quite feasible, a more pragmatic andapproximate approach may be adopted. At the initial stage of the fmGA, when the stringlength is close to problem length almost every string matches with others. As a result the sizeof a niche is large. Therefore, for relatively larger value of string length, loosing strings fromthe niche by adopting a relaxed strategy may be reasonable. On the other hand when the stringsize reduces, niche size also decreases. When the size of a niche is smaller than a threshold, aloosing strings should be restricted. These observations can be used to choose the thresholdingparameters, as described in the following.First, we need to divide the �ltering schedule into two parts| (1) the portion with somewhatrelaxed thresholding and, (2) the later part of the �ltering process during which thresholdingshould be more conservative. For all the experiments reported here, the later part begins whenthe string length is reduced to �k, where � is a constant and k is the size of the building-blocks.We used � = 2. During the �rst part we choose a value from the upper region of the minimaxspectrum. In other words a relatively larger value of �� is used. In this thesis, the averagevalue of the upper spectrum is used as the thresholding parameter for the �rst part. For thelast part of the �ltering schedule a more conservative value of �� should be chosen. I used theaverage of the complete minimax (both upper and lower) spectrum for the second part of theschedule.One of the important conclusions of this analysis of thersholding is that cross-competitionamong di�erent building-blocks plays a signi�cant role in thresholding selection. The fundamen-tal problem originates from the implicit de�nition of the relation and class spaces. Comparisonof relations is tried to accomplish by comparing classes from two di�erent relations, which isinappropriate. For large problems, such cross-competition is likely to eliminate some of thebuilding-blocks. 176
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